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Abstract. We compute the fundamental group of the complex and real
points of the surface parametrizing cuboids and of their respective minimal
resolutions of singularities. We also compute the fundamental group of the
analogous sets for the surface parametrizing face cuboids.

1. Introduction

In this note we study the fundamental groups of the surface parametrizing
cuboids (also called box variety in [4]) and of its resolution.

A cuboid is a hexahedron, characterized by seven lengths. These come from the
three edges A,B,C, the three face diagonals X,Y, Z, and the diagonal U, related by
the following four equations:

A2 +B2 − Z2 = 0

B2 + C2 −X2 = 0

C2 +A2 − Y 2 = 0

A2 +X2 − U2 = 0.

A perfect cuboid is defined to be a cuboid such that the seven lengths are in Z,
and the non-existence of such a cuboid is an old and sought-after conjecture whose
origin dates back to Euler.

The surface parametrizing cuboids, defined by Van Lujik [12], is the surface Υ
in P6 defined by the four equations above. Van Lujik shows that Υ is a complete
intersection and has 48 complex singular points which are ordinary double points.
He also constructs its desingularization Υ̃. An alternative moduli interpretation
involving modular curves, can be found in [4].

Our main result goes as follows.

Theorem 1.1. Let the symbol ∼ denote the minimal resolution of singularities.
We have:

(1) π1(ΥC) = π1(Υ̃C) = 0, where ΥC is the set of complex points of Υ, viewed
as a complex projective variety.

(2) π1(ΥR) = π1(N48−k) ∗ F24 and π1(Υ̃R) = π1(Nk) where ΥR is the set of
real points of Υ, viewed as a real projective variety, F24 is the free group of
24 generators, Nr is the connected sum of r copies of P2

R, and k a positive
integer described in §3.

1



2 DAVID JAROSSAY, FRANCESCO M. SAETTONE, YOTAM SVORAY

We prove part (1) of Theorem 1.1 in §2 and part (2) in §3. We also describe the
fundamental group of the real and complex points of the surface of face cuboids of
Υ in §4, i.e., Φ = Υ/ ∼, where ∼ here denotes the relation defined by Z ∼ −Z.

Our motivation for these results comes from the application of the Kim-Chabauty
method [9], which is a method to study the integral points of hyperbolic non-singular
algebraic curves, and a major tool in its is the crystalline realization of the unipotent
fundamental group, which can be computed via its topological fundamental group
over the complex numbers. By Faltings’ theorem there exists only finitely many
integral points in such a curve and the Chabauty-Kim method provides a way to
determine these points explicitly. Although the Kim-Chabauty method has been
mainly applied to curves, an example of an extension of the method to surfaces is
given in [2]. Here the method would be applied to Υ̃ minus a divisor.
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author to this problem1, and Netan Dogra for correspondence. We wish to thank
Brennan Richardson for his extensive help with the topological computations in
this article and Karl Schwede for help with the Macaulay2 code.
The second author was supported by ISF grant 1963/20 and BSF grant 2018250.

2. The fundamental group of the surface parametrizing complex
cuboids

Consider R = C[A,B,C,X, Y, Z, U ] and let H be the divisor defined by an
equation of the following form (for some α, β, γ ∈ C)

αA2 + βB2 + γC2 = δ.

Lemma 2.1. The following statements hold.
(1) The ideal I ⊂ R defining ΥC ∩H is a prime ideal;
(2) consider the open affines given by equating one the variables to 1, that is,

A = 1, B = 1, C = 1, X = 1, Y = 1, U = 1, Z = 1. Then the ideal I
remains prime under these respective restrictions.

(3) Υ is path-connected and so is its intersection with H.
(4) The minimal resolution of singularities of ΥC, namely Υ̃C, is connected.

Proof. The first two parts are variants of [12, Lemma 3.2.1]. Part 3 follows from
part 1 and from the fact that irreducible complex varieties are path connected in the
Euclidean topology. Part 4 follows from the fact that the blow up of an irreducible
variety is irreducible, as the fibers are connected by Zariski’s main theorem (see,
for instance, [6, Section 12.6]). □

We now recall the Lefschetz hyperplane theorem, which we use in our proof of
the proof of Theorem 2.3.

Theorem 2.2 (Lefschetz’s Hyperplane). Let H be an ample divisor on a manifold
X of dimension n, and let i : H ↪→ X be its inclusion. Then, for j < n− 1

πj(i) : πj(H) ≃ πj(X)

and πn−1 is a surjection.

1In turn, Ishai Dan-Cohen wishes to thank Ambrus Pál for introducing him to this problem.
To the best of our knowledge, the idea to approach the arithmetic of cuboids via fundamental
group techniques originates from him.
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Proof. See [13, 1.1]. □

The following result’s proof follows the idea of the first part of [3, Theorem 2.1].

Theorem 2.3. The fundamental group of ΥC is trivial. Moreover, Υ̃C has a trivial
fundamental group as well.

Proof. Let H be a non-trivial hyperplane that intersects Υ non-trivially and generi-
cally. We set W := ΥC∩H and U = ΥC−W , and let N be a tubular neighborhood
of H in ΥC. We exploit Van Kampen’s theorem to prove simply connectedness
of ΥC. Consider the covering (U,W ) of ΥC and note that U and W are open
and path-connected. Suppose that U ∩ N is path-connected and non trivial, and
fix a base point x0 ∈ U ∩ N which we will omit. Let the following morphisms
j1 : π1(U) → π1(ΥC) and j2 : π1(N) → π1(ΥC) be induced by the inclusion maps.

By Lemma 2.1, we have that ΥC is path-connected, and so j1, j2 form the fol-
lowing commutative pushout diagram:

π1(U ∩N) π1(U)

π1(N) π(ΥC) ≃ π1(N) ∗π1(N∩U) π1(U)

i1

i2 j1

j2

As in [3, p.324] we have that U is homeomorphic to a singular fiber in a de-
formation of a singularity. Therefore by [8, Corollary 5.9] we deduce that U is a
bouquet of 2-spheres, i.e., that U is a wedge sum of S2’s. Thus π1(S

2) = 0. This
immediately gives us that π1(U) is zero. On the other hand, it is now enough to
apply Lefschetz hyperplane theorem 2.2 to notice that H has the same fundamental
group as P6, which is trivial. Since N is a tubular neighborhood of H, they has the
same fundamental. Lastly, we have that both U and N have trivial fundamental
group. Hence their free product is trivial, and so we can conclude that π1(ΥC) = 0.

Finally, consider case of Υ̃C. The tubular neighborhoods of a singular point and
of the corresponding exceptional divisor have respectively the homothopy type of
a point and of P1. Hence they are both simply connected and in the Zariski–Van
Kampen diagram nothing changes, so they have the same fundamental group. □

Remark 2.4. This immediately verifies what was conjectured in [12, Bluff 1, p.
31]. Indeed, we have

0 = π1(Υ̃C) ↠ H1(Υ̃C) ≃ H1(Υ̃C).

For the Hodge diamond of Υ̃C, see [11, p.4].

Remark 2.5. Note that Van Luijk [12, Cor. 3.3.34] proves using Noether’s formula
form Euler characteristic of surfaces that the (topological) Euler characteristic of
Υ̃C is 80.

3. The fundamental group of the surface parametrizing real cuboids

We begin with a few observations about ΥR. First, as in Lemma 2.1, since ΥR
is an irreducible compact complete intersection of dimension 2, then ΥR is path



4 DAVID JAROSSAY, FRANCESCO M. SAETTONE, YOTAM SVORAY

connected.

Second, from the proof of in [12, Corollary 3.2.3], over the real numbers, ΥR has
24 singularities which are ordinary double points.

Third, by looking at the defining equations of ΥR, (viewed as a projective va-
riety) over the real numbers we must have that U = 1, as otherwise, all variables
must equal to zero which is obviously impossible in the projective case. Thus we
will view ΥR as a compact affine variety, as we replaced its last defining equation
by A2 + B2 + C2 = 1. From this we can conclude that ΥR is compact, as it is
contained in Ball1(0).

We will use these observations to compute the fundamental group of ΥR using a
few key results.

Proposition 3.1. There exists a compact differential surface M such that

π1(ΥR) ∼= π1(M) ∗ F24

where F24 is the free group on 24 generators. In particular, ΥR is not simply
connected.

Proof. We will construct M in the following way. Let p ∈ ΥR be an ordinary double
point. By Morse’s lemma (see [7, Theorem 2.46]), there exists a neighborhood
p ∈ U ⊂ Υ such that U is homeomorphic to

X = V (x2 + y2 − z2) ∩ Ball1(0) ⊂ R3.

Therefore, U \ {p} is homeomorphic to an open cone from whom we have removed
the origin, which itself is homeomorphic to the intersection of a ball with two
disjoint cylinders. Therefore, by gluing two disks on either sides of ΥR \ {p}, we
have replaced p be a smooth point, and by performing this to every singular point
of ΥR, we constructed a compact differential surface M . Now, we can view ΥR as
M in which we identified 2 · 24 = 48 points. Yet, identifying a pair of points on
a topological surface is the same as attaching a closed CW 1-cell to it. Therefore,
ΥR is homeomorphic to the wedge product of M with 24 circles, and so using
Van-Kampen’s Theorem, we conclude that

π1(ΥR) = π1(M) ∗ π1(

24∨
S1) = π1(M) ∗ F24.

□

We recall the classification theorem for differential compact surfaces, which we
will use extensively throughout this section. For more details about this result, see,
for example, [5].

Proposition 3.2 (Classification of differential compact surfaces). Let S be a com-
pact differential surface. Then S is homeomorphic to either the sphere S2, a con-
nected sum of g tori Σg, or the connected sum of k projective planes Nk. In par-
ticular we have that one of the following is true:

(1) π1(S) = 1,
(2) π1(S) = ⟨a1, b1, . . . , ag, bg : [a1, b1] · · · [ag, bg] = 1⟩,
(3) π1(S) = ⟨c1, . . . , ck : c21 · · · c2k = 1⟩.
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Proposition 3.3. Let Υ̃R be the minimal resolution of singularities of ΥR together
with the resolution map π : Υ̃R → ΥR. Then Υ̃R is homeomorphic to the connected
sum of M with Σ24.

Proof. Since the only singularities of ΥR are ordinary double points, then Υ̃R is
constructed by blowing up each singularity of ΥR once. We also note that Υ̃R is
path connected since Υ is irreducible, and therefore so is Υ̃R. Let p ∈ ΥR be an
ordinary double point, and so from Morse’s lemma there exists a neighborhood
p ∈ U ⊂ ΥR such that U is homeomorphic to

X = V (x2 + y2 − z2) ∩ Ball1(0) ⊂ R3.

Now, the blow up V (x2+y2−z2) at the origin is homeomorphic to the R×P1
R as the

exceptional divisor is isomorphic to P1
R, and blowing up ΥR at p is a homeomorphism

outside U . But locally outside p we have that M \ {p} is homeomorphic to Υ̃R \
π−1(p). Thus, topologically, the blow up of ΥR at p replaces the CW 1−cell which
connects the two points corresponding to x in M by a copy of R × P1

R = R × S1.
Therefore, it corresponds to the connect sum of M with a torus. By preforming
this over all 24 singular points, the result follows. □

Proposition 3.4. Υ̃R is non orientable.

Proof. Since Υ̃R is the resolution of ΥR, it is a compact differentiable surface. In
addition, we can write the resolution as a series of blow ups at its ordinary double
points ΥN → ΥN−1 → · · · → Υ1 → Υ0 = ΥR. We will prove that for every
i we have that H2(Υi,Z) is not torsion free, and so the result follows from the
cohomological description of orientability. Let xi ∈ Υi be the point we blow up
under the map πi : Υi+1 → Υi and let Ei+1 = π−1(xi). Then we have a long exact
sequence

· · · → H1(Ei+1,Z) → H2(Υi,Z) → H2(Υi+1,Z)⊕H2({xi},Z) → H2(Ei+1,Z) → · · · .
Yet we have that H2({xi},Z) = 0 and that Ei+1 is homeomorphic to P1

R, and thus
H2(Ei+1,Z) = 0 and H1(Ei+1,Z) = Z. Thus the long exact sequence becomes

Z → H2(Υi,Z) → H2(Υi+1,Z) → 0.

Therefore, since the map H2(Υi,Z) → H2(Υi+1,Z) is surjective then if Υi is non
orientable then so is Υi+1, and if Υi is orientable we have that H2(Υi,Z) = Z and
thus H2(Υi+1,Z) is the non zero cokernel of a map Z → Z, which can never be
torsion free. Therefore Υi+1 is never orientable for every i and the result follows. □

Remark 3.5. By the classification theorem we have that Υ̃R is homeomorphic to
Nk for some k.

Proposition 3.6. M is non-orientable and homeomorphic to Nk−48.

Proof. Since Υ̃R is non orientable and homeomorphic to the connected sum of M
with Σ24, then if M would have been orientable, then so would Υ̃R. Thus M
is homeomorphic to Nr for some r. Thus the connected sum of Nr and Σ24 is
homeomorphic N48+r, but is homeomorphic to Υ̃R, which itself is homeomorphic
to Nk. Thus k = 48 + r and the result follows. □

Proposition 3.7. We have k = 26 − χ(ΥR) where χ(ΥR) is the topological Euler
characteristic of ΥR.



6 DAVID JAROSSAY, FRANCESCO M. SAETTONE, YOTAM SVORAY

Proof. Since ΥR is constructed by attaching 24 CW 1-cells to M , we get that
χ(ΥR) = χ(M) − 24. But since M is homeomoprhic to Nk−48, we have that
χ(M) = 2− (k − 48) = 50− k. Thus χ(ΥR) = (50− k)− 24 = 26− k which gives
us that k = 26− χ(ΥR). □

Now, we recall a result by Bruce from [1].

Proposition 3.8 (Proposition 7 in [1]). Let f1, . . . , fr : Rn → R be polynomials of
degree ≤ d and suppose X = V (f1, . . . , fr) is compact in the Euclidean topology of
Rn. Then

χ(X) =
(−1)n − µ(H)

2

where χ(X) is the topological Euler characteristic of X and H : Rn+1 → R is defined
to be

H(x, y) = (

r∑
i=1

yd+1f(
x1

y
, . . . ,

xn

y
))− y2d+4 − x2d+4

1 − · · ·x2d+4
n ,

and by µ(H) we mean the real milnor number of H at the origin, i.e. the dimension
of R[[x1, . . . , xn]]/⟨ ∂H

∂x1
, . . . , ∂H

∂xn
⟩ as a real vector space, where R[[x1, . . . , xn]] is the ring

of real analytic functions in variables x1, . . . , xn.

Now, in order to compute χ(ΥR) we will use Bruce’s formula, as described above.
In our case we have that Υ is defined by the equations

A2 +B2 − Z2 = 0

B2 + C2 −X2 = 0

C2 +A2 − Y 2 = 0

A2 +B2 + C2 − 1 = 0.

Therefore, H will be a polynomial in 7 variables, namely A,B,C,X, Y, Z,D which
will be H(A,B,C,X, Y, Z,D) = D2((A2 + B2 − Z2)2 + (B2 + C2 −X2)2 + (C2 +
A2 − Y 2)2 + (A2 + B2 + C2 −D2)2) − A8 − B8 − C8 −X8 − Y 8 − Z8 −D8, and
χ(ΥR) can be computed from the value of µ(H).

We thus immediately obtain the following Corollary.

Corollary 3.9. The fundamental group π1(ΥR) is isomorphic to the free product
of F24 and π1(Nk−48).

4. The fundamental group of the surface parametrizing face cuboids

Van Lujik also considers the following surface. Let ≡ denote the relation defined
by Z ≡ −Z, and let us consider the surface Φ := Υ/ ≡, which is described in P5

Q
by

A2 + C2 − Y 2 = 0

B2 + C2 −X2 = 0

A2 +X2 − U2 = 0.

As showed in [12, 4.1 p.51], this surface is a complete intersection with 16 iso-
lated singularities. Moreover its resolution Φ̃ is shown to be a K3 surface which
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is isomorphic to the Kummer surface of the product of the two following elliptic
curves with complex multiplication. Consider

E : y2z = x3 − 4xz2

E′ : y2z = x3 + xz2

and the automorphism ι of E×E′ sending (P,Q) to (−P,−Q), where the symbol
− refers to the inverse in the group law of the elliptic curve. Then we have

Φ ≃ (E × E′)/⟨ι⟩.
For more details, see [12, p.53]. We prove the following result.

Proposition 4.1. We have π1(Φ(C)) = (Z/2Z)⋉ Z4 and π1(Φ̃(C)) = 0.

Proof. Since E and E′ are complex elliptic curves, it is well known that both are
homeomorphic to C/Z2. Therefore, Φ(C) is homeomorphic to (C/Z2)2/(Z/2Z) ≃
(C2/Z4)/(Z/2Z), where Z/2Z acts on (C/Z2)2 by (−1).(x1, x2) = (−x1,−x2). Thus
we have a composition of two coverings

C2 ↠ C2/Z4 ↠ (C2/Z4)/(Z/2Z) ≃ Φ(C),

where the second covering above has finite fibers. Therefore, The map

p : C2 ↠ (C2/Z4)/(Z/2Z)

obtained above is also a covering. Since C2 is simply connected, this map the
universal covering of Φ. Thus the fundamental group of Φ is the group of automor-
phisms of this covering map. By an argument of connectedness, we can check that
these automorphisms are the maps C2 → C2 of the following form:

ı(ϵ,n1,n2,n3,n4) : (z, z
′) 7→ (ϵz + n1 + in2, ϵz

′ + n3 + in4)

where (ϵ, n1, n2, n3, n4) ∈ (Z/2Z)× Z4.
Moreover, the composition of two such maps is given as follows :

ı(ϵ′,n′
1,n

′
2,n

′
3,n

′
4)
◦ ı(ϵ,n1,n2,n3,n4) = ı(ϵ′ϵ,ϵ′n1+n′

1,ϵ
′n2+n′

2,ϵ
′n3+n′

3,ϵ
′n4+n′

4)
.

Therefore, the group of automorphisms is isomorphic to the semi-direct produt
(Z/2Z)⋉ Z4 defined as

(ϵ′, n′
1, n

′
2, n

′
3, n

′
4)× (ϵ, n1, n2, n3, n4) = (ϵ′ϵ, ϵ′n1+n′

1, ϵ
′n2+n′

2, ϵ
′n3+n′

3, ϵ
′n4+n′

4)

The triviality of the fundamental group of the resolution Φ̃ comes from [10],
where Spanier shows that the resolution of (S1×S1)n/(Z/2Z) is simply connected.

□
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