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1. Introduction

Let P denote the set of prime numbers. The classical Bateman-Horn conjecture (see [2], [5]) states
what follows.

Conjecture 1.1 (Bateman-Horn). Let f1, . . . , fk ∈ Z[x] be distinct irreducible polynomials with posi-
tive leading coefficients and f their product. Let

ωf (p) := |{[a] ∈ Z/pZ such that f(a) ≡ 0 mod (p)}|.

By denoting

(1) C(f) :=
∏
p∈P

(
1− 1

p

)−1(
1− ωf (p)

p

)
it follows that ∣∣ϕ−1(Pk) ∩ [0, x]

∣∣ ∼ C(f)∏k
i=1 deg(fi)

∫ x

2

dt

(log(t))k

where ϕ : Z→ Zk is the map a 7→ (f1(a), . . . , fk(a)) and ∼ denotes the same asymptotic behaviour as
x tends to +∞.

Several authors have recently tackled this conjecture, either with variations in the function fields
setting as [9], [3] and [11], or in a more probabilistic manner as [7] and [21]. In a lower level of generality
other relevant results can be found, for instance, in [4], [6] and [16].

In this paper we propose a profinite analogue of Conjecture 1.1 by extending the methods developed
in [10], i.e., we exploit measure (or rather distribution) theoretic arguments. For a different categorical
approach still involving measures, see [1].

Let Ẑ be the profinite completion of Z. Dirichlet’s theorem on primes in arithmetic progressions

implies that (and is actually equivalent to, see [14]) the closure of P in Ẑ is

(2) P̂ = P t Ẑ∗.

Let π̂n : Ẑ→ Z/nZ denote the canonical projection and consider the counting measures

µn,ϕ−1(Pk) :=
1

|π̂n(ϕ−1(Pk))|
∑

x∈π̂n(ϕ−1(Pk))

δx

on Z/nZ, as n varies in the positive integers, and for δx the Dirac delta at the point x. In §2.2.3 we

will define liftings µ̃n,ϕ−1(Pk) of µn,ϕ−1(Pk) to the algebra of measures on Ẑ. Our profinite analogue of
Conjecture 1.1 consists of the following statement.

Conjecture 1.2 (profinite Bateman-Horn). Under the same hypotheses as in Conjecture 1.1 one has

(3) lim
n→0

µ̃n,ϕ−1(Pk) = µϕ−1((Ẑ∗)k) .

Note that the existence of the limit on the left-hand side of (3) is far from obvious and is actually
part of our conjecture: indeed, we do not know how to prove it. As for the right-hand side of (3), it

will be constructed in Proposition 3.16, as the procounting measure attached to ϕ−1((Ẑ∗)k) (i.e., the

limit of the counting measures on the images of ϕ−1((Ẑ∗)k) modulo n).
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What is the relation between Conjectures 1.1 and 1.2? We are still unable to prove any implication
from one to the other, in any direction. However, both claims fit in a generic philosophy of “irreducible
polynomials take lots of prime values, as many as allowed by local conditions”: in particular, both of
them imply the Schinzel conjecture (as we are going to prove in §3.3.3). Also, we shall show that the
local factors of (1) appear as well in the construction of µϕ−1((Ẑ∗)k).

We moreover underline that, while in the classical cases one considers Z embedded into R, heavily
relying on the Euclidean topology, our profinite approach is indeed completely independent of any
archimedean structure, therefore naturally extending to global fields (as we do in Conjecture 3.18).
In particular, in view of the literature cited above, the function field case of conjecture 1.2 can be
particularly interesting.

Finally, our conjecture may resemble an equidistribution statement: note that, while usually equidis-
tribution deals with a sequence of sets (i.e., indexed by natural numbers), in our case the set of indexes
varies in the supernatural numbers.

We now briefly describe the structure of the article.
In Section 2, we develop in broad generality a theory of distributions on profinite sets. Despite most

of the ideas exploited there are not novel in their essence, to the best of the authors’ knowledge they
were not treated elsewhere in the terms we propose, which are indeed foundational to the formulation
of Conjecture 1.2. Another approach to distribution on profinite sets can be found, for instance, in
[8] and its citation orbit; we point out that the intersection with our techniques and result is almost
empty.

The crucial new concept of this section consists of the procounting distributions, introduced in 2.21,
followed by their studies on products and on close pairs (see 2.37). It seems plausible to us that it
is possible to exploit these techniques far beyond the goals of this paper. For instance, since field
extensions are determined by their profinite Galois groups, we expect that our theory of profinite
distribution may apply to count certain extension of Q.

In Section 3, we extend [10] to problems where its methods do not hold, i.e., to some sets of (Haar)
measure zero. In particular, we focus on openly Eulerian sets (see Section 3.2 for this definition). The
theory of Section 2 allows to associate a measure with these sets, so that we can quantify how small
one of these zero-measure sets is. Moreover, we push our technique beyond openly Eulerian sets, to
a wider family of sets which are close to be openly Eulerian, in the sense that they ”differ” by a very
small set. The crucial such set is P, that leads us to Conjecture 1.2. We conclude this section by
showing the coherence of our conjecture in a few classical cases, namely, Dirichlet’s theorem, the Twin
Primes conjecture and Landau’s conjecture. Furthermore we show how the profinite Bateman-Horn
conjecture implies Schinzel’s hypothesis.

We conclude our paper with an appendix containing a numerical experiment for the Twin Primes
conjecture case, i.e., k = 1 and ϕ(x) = x+ 2, which gives us an empirical reason to be optimistic.

1.1. Acknowledgements. The third author thanks Roman Panenko for the useful conversations on
a preliminary draft of the paper. The third author is supported by by ISF grant 1963/20 and BSF
grant 2018250.

2. Distributions on Profinite Sets

In the following, by topological group we mean a group G endowed with a topological structure of
Hausdorff space such that the group operation is a continuous map from G × G to G. A topological
ring R is defined similarly, with the request that addition and multiplication are continuous. If R is
a topological ring, unless otherwise stated, we shall assume that all R-modules are topological groups
and the map R×M →M expressing the ring action of R on M is continuous. Also, unless otherwise
stated, we shall assume that all R-module morphisms are continuous.

For any topological spaces A, B, we write C(A,B) to denote the set of continuous functions from A
to B. The characteristic function of a set S will be denoted by 1S , simplifying it to 1x when S = {x}
is a singleton. (By abuse of notation, we will use the same symbol 1S independently of the unitary
ring the characteristic function takes values in.)
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2.1. Distributions on profinite sets. Throughout Section 2, we fix a profinite set

(4) X := lim←−
α∈J

Xα

Here {Xα}α∈J is an inverse system of finite sets, labeled by α ranging in some arbitrary directed set
of indexes J , with maps πβα : Xβ → Xα for all β > α in J . Without loss of generality, we can (and
will) assume that the maps πβα are all surjective. Let πα : X → Xα denote the natural projection.

For simplicity, we also postulate that J contains a totally ordered countable cofinal subset.

2.1.1. The profinite topology. In this paper finite sets are always assumed to have the discrete topology.
Then the inverse limit topology on X (that is, the coarsest topology such that all the maps πα are
continuous) makes it a profinite topological space

Lemma 2.1. If S is a subset of X, its closure is⋂
α∈J0

π−1α (πα(S)) ,

where J0 is any cofinal subset of J .

Proof. Assume x is a point of X outside the closure of S. Then there is a neighbourhood U of x
such that U ∩ S = ∅. One inclusion follows observing that, without loss of generality, we can take
U = π−1α (πα(x)) for some α ∈ J0. The opposite inclusion is obvious. �

In the following, we shall say that S ⊆ X is α-saturated if S = π−1α (πα(S)).

2.1.2. Continuous and locally constant functions. Let R be a (commutative and unitary) topological
ring: then C(X,R) becomes a topological R-module with the uniform convergence topology.

In order to simplify some arguments, we shall always assume that the topology on R is induced by
an absolute value | · |R , so that C(X,R) is endowed with the supremum norm ‖ · ‖∞ .

Remark 2.2. For further reference, we note that C(Xα, R) is a free R-module with basis {1x}x∈Xα ,
for every α ∈ J , because Xα is finite and discrete. As a topological space, C(Xα, R) is homeomorphic
to the product R|Xα|.

For all β > α in J , we have a map

(πβα)∗ : C(Xα, R)→ C(Xβ , R)

by f 7→ f ◦ πβα . Thus we get a direct system, with limit

(5) Lc(X,R) := lim−→
α∈J
C(Xα, R) .

There is a continuous injection Lc(X,R) ↪→ C(X,R) induced by the maps

π∗α : C(Xα, R) −→ C(X,R) ,

f 7→ f ◦ πα .

Lemma 2.3. The image of Lc(X,R) in C(X,R) consists exactly of the R-valued locally constant
functions on X.

Proof. By definition, the fibers π−1α (πα(x)), as α varies in J and x ∈ X, form a basis of the topology.
Hence, if f is locally constant, there is a cover of such fibers such that f is constant on each of them.
By compactness, one can extract a finite subcover,

X =

n⋃
i=1

π−1αi (παi(xi)).

Take α ∈ J such that α > αi for i = 1, . . . , n. Then f factors through Xα . �

Corollary 2.4. A subset of X is compact open if and only if it is α-saturated for some α ∈ J .

Proof. If U ⊆ X is compact open, then its characteristic function 1U is locally constant, hence one
has 1U = f ◦ πα for some α and f ∈ C(Xα, R). This is possible only if f = 1S for some S ⊆ Xα, with
U = π−1α (S). Therefore U = π−1α (πα(U)).

The converse implication is obvious from the definition of the profinite topology. �
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Lemma 2.5. The image of Lc(X,R) is dense in C(X,R).

Proof. Let f ∈ C(X,R) and fix U ⊆ R a neighbourhood of 0. By continuity, for any x ∈ X we can find
a neighbourhood Ax such that f(y)− f(x) ∈ U for all y ∈ Ax . We can also assume Ax = π−1αx (παx(x))
for some αx ∈ J . By compactness, we can extract a finite subcover {Ax1

, ..., Axn} from the open
cover {Ax}. Since J is directed, one can find an index α > αxi , i = 1, ..., n. For any y ∈ Xα, choose
ỹ ∈ π−1α (y) and define a function fU by

fU (x) =
∑
y∈Xα

f(ỹ) 1π−1
α (y) .

Then fU is locally constant and f(x)− fU (x) ∈ U for every x ∈ X. �

By abuse of notation, in the following we will often identify Lc(X,R) and C(Xα, R) with their images
in C(X,R); note, however, that the topology on Lc(X,R) is not the one as a subspace of C(X,R). More
precisely, the topology on Lc(X,R) is induced by (5): that is, Lc(X,R) is given the finest topology
such that all the embeddings C(Xα, R) ↪→ Lc(X,R) are continuous.

Finally, we observe that if R is complete then a standard argument shows that so is C(X,R). The
same holds for Lc(X,R), with the direct limit topology, as we now prove.

Proposition 2.6. If R is complete then so is Lc(X,R).

Proof. We are going to show that, by definition of direct limit topology, a sequence (fn)n is Cauchy
in Lc(X,R) only if there is some α such that fn ∈ C(Xα, R) for every n� 0. Hence the completeness
of C(Xα, R) for every α implies that also Lc(X,R) is complete.

For α ∈ J , define a continuous function mα : C(X,R)→ R by letting {Uα,i} be the partition of X
into fibers of πα and putting

mα(f) := max
i

{
sup

x,y∈Uα,i
|f(x)− f(y)|R

}
.

Then β > α implies mα(f) > mβ(f) and one has f ∈ C(Xα, R) if and only if mα(f) = 0.
Let J0 = {αn}n∈N be a totally ordered countable cofinal subset of J . Following [19, Theorem 6.5],

it is enough to show that if E ⊆ Lc(X,R) is bounded then it is contained in C(Xα, R) for some α. If
not, then for every αn ∈ J0 there is fn ∈ E such that mαn(fn) > 0. Consider the set

W =

{
f ∈ Lc(X,R) | mαn(f) <

mαn(fn)

n
∀n
}
.

Given β ∈ J , there is n(β) such that αn > β for every n > n(β). This implies that

(π∗β)−1(W ) =

{
f ∈ C(Xβ , R) | mαn(f) <

mαn(fn)

n
∀n < n(β)

}
is open. Therefore W is open and we have a contradiction, because E * nW for all n. �

2.1.3. Measures and distributions. For a (pro)finite topological space, we define R-valued measures
and distributions as the topological duals, respectively, of continuous and locally constant functions
(so that they coincide when the space is finite). For X as in (4) we obtain the R-modules

M(X,R) := HomR(C(X,R), R)

and

D(X,R) := HomR(Lc(X,R), R) .

(In both cases, we only consider continuous homomorphisms.) From (5) one immediately gets

(6) D(X,R) = lim←−
α∈J
D(Xα, R)

where the inverse system is built by the obvious maps

(πβα)∗ : D(Xβ , R)→ D(Xα, R) .

Any measure becomes a distribution when restricting it to locally constant functions.

Lemma 2.7. The natural map M(X,R)→ D(X,R) is injective.
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Proof. Assume µ1 and µ2 are different inM(X,R). Then there is f ∈ C(X,R) such that µ1(f) 6= µ2(f).
By Lemma 2.5 there is some sequence (fn) of locally constant functions which converge uniformly to
f . Since both µi’s are continuous, we have

µi(f) = limµi(fn) .

Thus there must be some locally constant fk such that µ1(fk) 6= µ2(fk). �

Lemma 2.8. Let δ be an R-valued distribution on X. Assume that R is complete and δ(1U ) is bounded
as U varies among compact open subsets of X. Then δ is a measure on X.

Proof. By Lemma 2.5, any f ∈ C(X,R) is the uniform limit of a sequence (fn) of locally constant
functions. The inequalities

|δ(fn)− δ(fm)|R 6 ‖fn − fm‖∞ · sup
U
|δ(1U )|R

show that the sequence δ(fn) is Cauchy. Its limit will be δ(f). �

Note that D(X,R) is a module over the ring Lc(X,R), by

(7) (f · δ)(g) := δ(fg) .

2.1.4. The topology of D(X,R). Both M(X,R) and D(X,R) are endowed with the weak-∗ topology
(that is, the coarsest topology which makes all evaluation maps evf : µ 7→ µ(f) continuous, where f
varies respectively in either C(X,R) or Lc(X,R) ). One easily checks that the R-module operations
are continuous.

Lemma 2.9. Let α ∈ J . The R-module D(Xα, R) is free on the basis {δx}x∈Xα , where δx is the
Dirac functional at x. The weak-* topology on D(Xα, R) is the same as the product topology as a free
module.

Proof. Recall Remark 2.2. The pairing
⊕
x∈Xα

Rδx × C(Xα, R)→ R given by

(8)

(∑
x

axδx,
∑
x

bx 1x

)
7→
∑
x

axbx

is continuous in both variables because R is a topological ring. The first statement is an immediate
consequence.

As for the second claim, it is clear from (8) that the product topology on D(Xα, R) makes evf
continuous for any f ∈ C(Xα, R) and hence is finer than the weak-* topology. It is also coarser,
because, by (8), the coordinate maps defining it are {ev1x}x∈Xα , which must be continuous with
respect to the weak-* topology. �

Lemma 2.9 yields an explicit description of the structure maps (πα)∗ : D(X,R) → D(Xα, R) from
(6), namely

(9) (πα)∗(µ) : f =
∑
x∈Xα

ax 1x 7→
∑
x∈Xα

axµ(1π−1
α (x)) =

∑
x∈Xα

µ(1π−1
α (x))δx(f) .

Proposition 2.10. On D(X,R), the inverse limit topology from (6) is the same as the weak-* topology.

Proof. Each of the two topologies is defined as the coarsest one which makes continuous the maps
in a certain set, namely the evaluation maps {evf}f∈Lc(X,R) in the weak-* case and the projections
{(πα)∗}α∈J in the inverse limit case. So it is enough to show that if all the maps in one of the two
sets are continuous then so are the ones in the other set and vice versa.

Take f ∈ Lc(X,R). Then, by (5), one has f = π∗α(g) for some g ∈ C(Xα, R) and the equality

µ(f) = µ(π∗α(g)) = (πα)∗(µ)(g)

yields evf = evg ◦ (πα)∗, with evg : D(Xα, R)→ R the evaluation at g, which is continuous by Lemma
2.9. This proves that if all the projections are continuous then so are the evaluation maps.

On the other hand, (9) shows that the δx-coordinate of (πα)∗ is simply the evaluation at 1π−1
α (x) .

Therefore each (πα)∗ is continuous if all the evaluation maps are so. �

Corollary 2.11. If R is complete, then so is D(X,R).
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Proof. An inverse limit of complete topological modules is complete. In this particular case, if (µn)n∈N
is a Cauchy sequence in D(X,R), then each ((πα)∗(µn))n∈N is also Cauchy, with limit µα. The
equalities (πβα)∗(µβ) = µα hold (by continuity and uniqueness of the limit) for every β > α, so there is
µ ∈ D(X,R) such that (πα)∗(µ) = µα. Finally, µ = limn µn is true by construction. �

Remark 2.12. When X is a group, D(X,R) is an algebra with the convolution product. More
precisely, D(Xα, R) =

⊕
x∈Xα Rδx is isomorphic to the group algebra R[Xα] and taking the limit one

obtains
D(X,R) ' R[[X]] := lim←−

α∈J
R[Xα] .

In the case R = Zp and X a p-adic Lie group, this additional structure plays an important role in
Iwasawa theory.

2.1.5. Products. Assume we are given a collection of profinite sets {Yκ}κ∈K, defined by Yκ = lim←−Yκ,ακ ,

where ακ varies in a direct set Jκ and each Yκ,ακ is finite. We want to describe distributions on
∏
κ Yκ.

Lemma 2.13. Let {Yκ}κ∈K be a collection of profinite sets, as above, and put X =
∏
κ∈K Yκ. Consider

the directed set J =
⋃
K Jκ, where K varies among all finite subsets of K and the order is given by

β = (βκ)κ∈K′ > α = (ακ)κ∈K if K ⊆ K ′ and βκ > ακ for all κ ∈ K.
Then X = lim←−

α∈J
Xα , with Xα =

∏
κ∈K Yκ,ακ for α = (ακ)κ∈K ∈ J .

Proof. Obvious by abstract nonsense. �

Lemma 2.14. Let Y1, . . . , Yn be finite sets. There is an isomorphism of R-modules
n⊗
i=1

D(Yi, R) −→ D(Y1 × · · · × Yn, R)

given by δy1 ⊗ · · · ⊗ δyn 7→ δ(y1,...,yn).

Proof. Straightforward from Lemma 2.9. �

Proposition 2.15. Let {Yκ}κ∈K be a finite collection of profinite sets and put X =
∏
κ∈K Yκ. Then

there is a natural morphism

(10)
⊗
κ∈K
D(Yκ, R) −→ D(X,R)

with dense image.

Proof. We use the notation of Lemma 2.13. The isomorphism of Lemma 2.14 commutes with the
structure maps induced by πκ,ακ : Yκ → Yκ,ακ on the one side and πα : X → Xα on the other. Taking
the limit and composing with the natural morphism⊗

κ∈K
D(Yκ, R) =

⊗
κ∈K

lim←−D(Yκ,ακ , R) −→ lim←−
⊗
κ∈K
D(Yκ,ακ , R),

we obtain (10). The image is dense because the composition with (πα)∗ is surjective for every α, by
Lemma 2.14. �

Remark 2.16. In order for (10) to be an isomorphism, one has to replace
⊗
D(Yκ, R) with

⊗̂
D(Yκ, R),

the completed tensor product. For an explicit example of why this is needed, just consider the case
R = Zp and Y1 = Y2 = Zp. It is well-known that then one has D(Yi, R) ' Zp[[ti]] and D(Y1×Y2, R) '
Zp[[t1, t2]]. The natural map Zp[[t1]]⊗ Zp[[t2]]→ Zp[[t1, t2]] is not surjective.

We shall denote the image via (10) of ⊗κµκ by the same symbol and call it the product of the
distributions {µκ}κ∈K .

Lemma 2.17. Let X, Yκ be as in Proposition 2.15. The product distribution ⊗κµκ is uniquely char-
acterized by the property

(11) ⊗κµκ
(
1∏

Uκ

)
=
∏
κ∈K

µκ(1Uκ) ,

for any choice of compact open subsets Uκ ⊆ Yκ .
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Proof. By definition of the product topology, any compact open subset of X can be written as a finite
union of sets of the form

∏
κ Uκ, with Uκ ⊆ Yκ compact open. Thus a distribution on X is determined

by its values on the functions 1∏
Uκ .

In order to check (11), there is no loss of generality in taking sets of the form Uκ = π−1κ,ακ(xκ), so to

have
∏
Uκ = π−1α (x), with x = (xκ). For all κ we have

µκ(1xκ) =
(
(πα)∗(µκ)

)
(1xκ) =

∑
yκ∈Yκ,ακ

cyκδyκ(1xκ) = cxκ

⊗κµκ
(
1π−1

α (x)

) †
=
(
(πα)∗(⊗κµκ)

)
(1x) =

⊗ ∑
yκ∈Yκ,ακ

cyκδyκ

 (1xκ)
‡
=
∏

cxκ

where † applies (9) and ‡ follows from Lemma 2.14. �

Equality (11) shows the problem in extending Proposition 2.15 to the case when the set of indexes
K is infinite. Indeed, taking µκ ∈ D(Yκ, R) such that µκ(1Yκ) = c for every κ, where c ∈ R is such
that the sequence cn has no limit, then we see no way of giving to (⊗κµκ)(1X) a meaning compatible
with (11).

We say that an infinite product
∏
κ∈K cκ converges in R if the equality limK

∏
κ∈K cκ = r (where

the limit is taken for K varying among finite subsets of K) is satisfied for some r ∈ R.

Theorem 2.18. Let X =
∏
κ∈K Yκ, where each Yκ is profinite. For each κ ∈ K let µκ ∈ D(Yκ, R) be

such that
∏
κ∈K µκ(1Yκ) converges. Then the product distribution ⊗κµκ exists.

Proof. Let U be a compact open subset of X. Without loss of generality we can assume

(12) U =
∏
κ∈K

Uκ ×
∏

κ∈K−K
Yκ

where K ⊆ K is finite and each Uκ ⊆ Yκ compact open. Thus we can follow (11) and define

(13) ⊗κµκ(1U ) :=
∏
κ∈K

µκ(1Uκ)×
∏

κ∈K−K
µκ(1Yκ) .

The hypothesis implies that the product on the right-hand side of (13) converges to a limit which is
independent of the choice of the decomposition of U . �

Remark 2.19. By the above definition of convergence, we allowed limK

∏
κ∈K µκ(Yκ) = 0. When

this happens, ⊗κµκ need not be trivial: for example, fix a finite set K0 and choose the distributions
µκ so that µκ(1Yκ) is 0 if κ ∈ K0 and 1 otherwise. Distributions with total mass 0 play an important
role in certain parts of non-archimedean analysis, so it seems more convenient to keep this possibility
open also for our definition of product distribution.

Let X be a profinite set and Z ⊆ X a closed subset. A distribution µ ∈ D(X,R) is Z-normalized if
µ(1Z) = 1. Denote

D1(X,R) :=
{
µ ∈ D(X,R) | µ(1X) = 1

}
Corollary 2.20. The map µ 7→

(
πκ∗(µ)

)
induces a bijection from D1(X,R) to

∏
κ∈KD1(Yκ, R).

Proof. �

2.2. Procounting distributions. From now on we assume that R is a Q-algebra, so to have

1

|Xα|
∈ R ∀α ∈ J .

2.2.1. A categorical limit. We define:

(14) µα :=
1

|Xα|
∑
x∈Xα

δx ∈ D(Xα, R).

This is a distribution on Xα .
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Definition 2.21. The procounting distribution on X is

µX := lim←−
α∈J

µα ∈ D(X,R)

(when this limit exists).

Proposition 2.22. The inverse limit µX exists as a distribution in D(X,R) if and only if

(15) |(πβα)−1(x)| = |Xβ |
|Xα|

for all x ∈ Xα , β > α in J .

Proof. By definition of inverse limit, µX exists if and only if the equality

(16) µα = (πβα)∗(µβ)

is satisfied for every β > α in J . By (14), condition (16) can be rewritten as

1

|Xα|
∑
x∈Xα

δx = µα = (πβα)∗(µβ) =
1

|Xβ |
∑
y∈Xβ

(πβα)∗(δy) =
1

|Xβ |
∑
y∈Xβ

δπβα(y) =

=
1

|Xβ |
∑
x∈Xα

∑
y∈(πβα)−1(x)

δx =
1

|Xβ |
∑
x∈Xα

|(πβα)−1(x)|δx

The equivalence between (15) and (16) now follows by Lemma 2.9. �

Remarks 2.23.
1. Condition (15) is obviously satisfied when X is a profinite group. In this case the inverse limit µX
is precisely the Haar measure on X.
2. Assume µX exists and let U ⊆ X be compact open. Then U = π−1α (πα(U)) for some α, by Corollary
2.4, and thus 1U = 1πα(U) ◦πα. Definition 2.21 yields

µα = (πα)∗(µX) = µX ◦ (πα)∗ ,

which, together with (14), implies

(17) µX(1U ) = µX((πα)∗ 1πα(U)) = µα(1πα(U)) =
1

|Xα|
∑
x∈Xα

δx(1πα(U)) =
|πα(U)|
|Xα|

.

3. In general, we cannot expect µX to be a measure: indeed, it is well-known that µZp is a distribution
and not a measure when R = Qp (see below for a proof). However µX is always a measure in the cases
of most interest for this paper, with R either R or C, as the following proposition proves.

Proposition 2.24. Assume µX esists. It is a measure only if the set
{

1
|Xα|

}
α∈J is bounded in R.

This condition is also sufficient if R is complete.

Proof. The last statement is a straightforward consequence of formula (17) and Lemma 2.8 (using the
fact that N is bounded in R if | · |R is non-archimedean and

∣∣|πα(U)|
∣∣
R
6
∣∣|Xα|

∣∣
R

otherwise). As for

necessity, assume that {|Xα|−1}α∈J is unbounded. Then there exists a sequence (αn)n∈N ⊆ J such
that |Xαn | = cn with

(18) |cn|R <
1

n
.

Fix z ∈ X and consider

fn := cn 1π−1
αn (παn (z))

= gn ◦ παn
with gn = cn 1παn (z). The sequence (fn)n∈N converges to 0 in C(X,R), by (18). However, reasoning
as in (17) shows

µX(fn) = µX((παn)∗gn) = µαn(gn) =
1

|Xαn |
∑

x∈Xαn

δx(cn 1παn (z)) =
1

cn
· cn = 1

for every n. Thus µX cannot extend to a continuous functional on C(X,R). �



PROFINITE BATEMAN-HORN 9

2.2.2. The Hecke submodule. Assume that µX exists (for example because X is a group). Then we
can use (7) to define a map

H : Lc(X,R) −→ D(X,R)

by f 7→ f · µX . We define the Hecke submodule to be the image of H. The equality

(πα)∗(1π−1
α (x)) = δx

implies that the Hecke submodule surjects onto all D(Xα, R) and hence is dense in D(X,R).

Remark 2.25. When X is a group, the R-module D(X,R) becomes an algebra with the convolution

product. Readers might be familiar with the case X = GLn(A
(∞)
K ), where K is a global field and A

(∞)
K

the non-archimedean part of its adele ring: in this case, the Hecke submodule is the “usual” Hecke
algebra, as appearing in the theory of automorphic forms.

The distribution functor is covariant: if φ : X → Y is a continuous map of (pro)finite sets, it induces
φ∗ : D(X,R)→ D(Y,R) by φ∗(µ)(f) = µ(f ◦ φ) (because f ◦ φ is locally constant if so is f). However,
restriction to the Hecke submodule yields a contravariant functor: in particular, this allows us to lift
distributions from Xα to X. The idea is summarized by the commutative diagram

Lc(X,R)
H−−−−→ D(X,R)

(πα)
∗
x y(πα)∗

C(Xα, R) −−−−→
Hα

D(Xα, R)

(where Hα is defined in the obvious way). The equality (πα)∗ ◦ H ◦ (πα)∗ = Hα can be checked by
computing

(πα)∗
(
(πα)∗(1x) · µX

)
= (πα)∗(1π−1

α (x) ·µX) = 1πα(π−1
α (x)) ·(πα)∗(µX) = 1x ·µα =

1

|Xα|
δx .

2.2.3. A topological limit. As above, assume that µX exists. For S ⊆ X, let

µS,α :=
1

|πα(S)|
∑

x∈πα(S)

δx ∈ D(Xα, R) .

If S is closed we have S = lim
←
πα(S). However, there is no reason why the counting distributions µS,α

should satisfy condition (15) and form an inverse system. Define

(19) µ̃S,α :=
|Xα|
|πα(S)|

∑
x∈πα(S)

1π−1
α (x) ·µX =

|Xα|
|πα(S)|

1π−1
α (πα(S))

·µX ∈ D(X,R) ,

so that

(πα)∗(µ̃S,α) =
|Xα|
|πα(S)|

(πα)∗(1π−1
α (πα(S))

·µX) =
|Xα|
|πα(S)|

1πα(S) ·µα =

=
|Xα|
|πα(S)|

1

|Xα|
∑

x∈πα(S)

δx = µS,α

In particular, if U is α-saturated one has

(20) µ̃S,α(1U ) = µS,α(1πα(U)) =
|πα(U) ∩ πα(S)|
|πα(S)|

by the same reasoning as used in (17).

Definition 2.26. Let S be a subset of X. The procounting distribution µS attached to S is the limit
(if it exists)

(21) µS = lim
α∈J

µ̃S,α

of the net µ̃S,α in D(X,R).
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The limit in (21) is taken with respect to the topology of D(X,R), as discussed in §2.1.4. Thus
µS = limα µ̃S,α means that for every neighborhood U of µS one can find an index α0 such that µ̃S,α ∈ U
if α > α0. In practice, it is enough to check the convergence of the values µ̃S,α(1U ) for every compact
open U ⊆ X.

Remark 2.27. Definitions 2.21 and 2.26 are compatible: if µX exists in the sense of Definition 2.21
then it is also the limit of the net µ̃X,α . Indeed, (19) yields µ̃X,α = µX for every α.

Lemma 2.28. Let S be the closure of S ⊆ X. Then µS exists if and only if so does µS . Moreover,
these two distributions are equal.

Proof. Lemma 2.1 immediately yields that the equality πα(S) = πα(S) holds for every α ∈ J . By
(19), this implies µ̃S,α = µ̃S,α . �

By Lemma 2.28, in the following we shall mostly consider closed S. If S is also open, the situation
is particularly nice, as the next result shows.

Lemma 2.29. Assume S = π−1γ (πγ(S)) for some γ ∈ J . Then µ̃S,α converges to µS = cS 1S ·µX
where

cS =
|Xγ |
|πγ(S)|

=
1

µX(1S)
.

Proof. Since µX exists, all fibers of the transition maps πβα have the same cardinality, by Proposition
2.22. The equality πα(S) = (παγ )−1(πγ(S)) holds for α > γ, by the assumption on S. Thus (15) yields

|Xα|
|Xγ |

=
|πα(S)|
|πγ(S)|

.

and hence cS = |Xα|/|πα(S)| for α > γ. Therefore (19) becomes µ̃S,α = cS 1S ·µX for any such α. �

We conclude with an example where µS does not exist.

Example 2.30. For p be an odd prime, take X = Zp (with defining maps πn : Zp → Z/pnZ) and
S = S0 ∪ S1, with

S0 :=

{ ∞∑
k=0

akp
k | ak = 0 if k is even , ak ∈ {1, . . . , p− 1} if k is odd

}
and

S1 :=

{ ∞∑
k=0

akp
k | ak = 0 if k is odd , ak ∈ {1, . . . , p− 1} if k is even

}
.

Thus one has π1(S0) = {[0]p}, π1(S1) = (Z/pZ)∗ and, for x ∈ πn(S0),

|(πn+1
n )−1(x)| =

{
p− 1 if n is odd

1 if n is even

while the reverse holds for x ∈ πn(S1). A simple induction then shows

|πn(S0)| = (p− 1)bn/2c and |πn(S1)| = (p− 1)b(n+1)/2c .

Since πn(S) ∩ πn(pZp) = πn(S0), formula (20) yields

µ̃S,n(1pZp) =
|πn(S0)|
|πn(S)|

=


1

p
if n is odd,

1

2
if n is even.

This proves that the distributions µ̃S,n do not converge (independently of the choice of R).
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2.2.4. The ambient space. In §2.2.3, the distribution µS was defined assuming the existence of µX .
Now we will show that this definition is in fact independent of the ambient space.

If S ⊆ X is closed then one has S = lim←−
α∈J

πα(S). The inclusions ια : πα(S) ↪→ Xα induce

D(πα(S), R) ↪−→ D(Xα, R) ∀α ∈ J

and thus, taking the limit, ι∗ : D(S,R) ↪−→ D(X,R).

Lemma 2.31. In the setting above, the map ι∗ is a closed embedding, with image

ι∗
(
D(S,R)

)
=
{
µ ∈ D(X,R) | µ(1U ) = 0 if U ∩ S = ∅

}
where U varies among all the compact open subsets of X.

Proof. Lemma 2.9 immediately yields that the image of (ια)∗ is the space{
µ ∈ D(Xα, R) | µ(1x) = 0 if x /∈ πα(S)

}
with basis {δx | x ∈ πα(S)}. Hence the maps (ια)∗ are all closed embeddings. This implies the same
for ι∗ .

Let µ ∈ ι∗
(
D(S,R)

)
and fix a compact open U ⊆ X. Since S is closed, Lemma 2.1 shows that

U ∩ S = ∅ holds only if there is some α ∈ J such that πα(S) ∩ πα(U) = ∅. Replacing, if needed, α
with a bigger index, we can assume that U is α-saturated: but then

µ(1U ) = µ(1π−1
α (πα(U))) = (πα)∗(µ)(1πα(U)) = 0,

because (πα)∗(µ) is in ι∗
(
D(πα(S), R)

)
.

Vice versa, if µ(1U ) = 0 for every compact open U , it follows

(πα)∗(µ)(1x) = µ(1π−1
α (x)) = 0,

showing that (πα)∗(µ) is in the image of (ια)∗ for all α and hence µ ∈ D(S,R). �

In the following, we shall identify D(S,R) with its image via ι∗ .

Corollary 2.32. If µS exists, then it is the unique element in D(S,R) such that

(22) µS(1U ) = lim
α

|πα(U)|
|πα(S)|

for any compact open U ⊆ S.

Proof. By definition, we have µS(1U ) = limα µ̃S,α(1U ). Now just apply (20) and Lemma 2.31. �

Remark 2.33. Corollary 2.32 makes it clear that µS is independent of the ambient space X. The
intrinsic characterization of µS provided by (22) could be used as definition of the procounting distri-
bution attached to S, in alternative to (21). We have chosen to start with the former because in the
situations of interest to us there is always a natural ambient space X such that µX exists in the sense
of Definition 2.21.

Finally, we note that the assumption about the existence of µX can be made without any loss of
generality.

Proposition 2.34. For any profinite space X as in (4) there exists a closed embedding in a profinite
space Y such that µY exists (in the sense of Definition 2.21).

Sketch of proof. Let J0 = {αn}n∈N ⊆ J be a countable cofinal chain. We shall use the shortenings
Xn for Xαn and so on.

The idea is to construct Y by embedding each Xn into a set Yn so that for every n the fibers of
πn+1
n : Yn+1 → Yn have all the same cardinality. This can be achieved starting with Y0 = X0 and

then defining recursively Yn by adding enough points to Xn. The existence of µY then follows from
Proposition 2.22. �



12 DEMANGOS, LONGHI, AND SAETTONE

2.2.5. The procounting distribution of a product. Let X =
∏
κ∈K Yκ be as in §2.1.5 and consider a

subset of the form S =
∏
κ Tκ . By Lemma 2.13, X is the limit of Xα with α = (ακ)κ∈K ∈

⋃
JK . One

has

πα(S) =
∏
κ∈K

πακ(Tκ)

and hence the isomorphism of Lemma 2.14 yields

(23)
⊗
κ∈K

µTκ,ακ =
⊗
κ∈K

∑
y∈πακ (Tκ)

δy
|πακ(Tκ)|

7→ 1

|πα(S)|
∑

x∈πα(S)

δx = µS,α .

Proposition 2.35. Assume X =
∏
κ∈K Yκ, as in Proposition ??, and consider a subset of the form

S =
∏
κ Tκ . If the procounting distribution µTκ exists for every index κ, then µS also exists and is the

product of the µTκ ’s.

Proof. Since, by definition, µTκ(1Tκ) = 1 hold for every κ, Theorem 2.18 ensures the existence of
⊗κµTκ and we just have to check that the latter satisfies Definition 2.26.

Let U ⊆ X be compact open. By Corollary 2.4 and Lemma 2.13, U is α-saturated for some
α = (ακ)κ∈K0

, where K0 is a finite subset of K. If β > α, one has β = (βκ)κ∈K with K0 ⊆ K and
βκ > ακ for all κ ∈ K0. Thus for such a β, we obtain

πβ(U) =
∏
κ∈K

πβκ(U) =
∏
κ∈K0

πβκ(U)×
∏

κ∈K−K0

Yκ,βκ ,

which, together with (23), implies

(24) µS,β(1πβ(U)) =
∏
κ∈K0

|πβk(U) ∩ πβκ(Tκ)|
|πβκ(Tκ)|

·
∏

κ∈K−K0

1 =
∏
κ∈K0

µTκ,βκ(1πβk (U))

As a finite product of convergent terms, the right-hand side of (24) has a limit as β grows. This proves
that µS exists and is given by the formula

(25) µS(1U ) =
∏
κ∈K

µTκ(1πκ(U))

where πκ : X → Yκ is the canonical projection. (Note that our proof shows that πκ(U) = Yκ for κ /∈ K0.
Hence µTκ(1πκ(U)) = 1 for almost every κ and the right-hand side of (25) is a finite product.) �

2.3. Procounting measures. From now on, we take R (or C), with the usual absolute value, as our
ring of coefficients R. Proposition 2.24 implies that if µX exists then it can be extended to a positive
functional on C(X,R) and hence, by the Riesz representation theorem [18, 2.14], it defines a regular
Borel measure (i.e., a Radon measure), which we shall still denote as µX . In particular, if C ⊆ X is
closed we have

µX(C) = inf
C⊆U

µX(1U ) = inf
α∈J0

µX(1π−1
α (πα(C)))

by Lemma 2.1 (where U varies among compact open subsets).

Lemma 2.36. If S is open, then µS exists and it satisfies µS = supU µU , where U varies among all
the compact open subsets of X contained in S.

Proof. For any α ∈ J , let

(26) Aα := {x ∈ Xα | π−1α (x) ⊆ S}

and Uα := π−1α (Aα). Each Uα is compact open and, as α grows in J , they form an increasing cover of
S (since the latter is open).

By definition of the topology on X, the hypothesis that yields S = ∪απ−1α (Aα). Therefore we
obtain, for any compact open V ⊆ X,

(27) lim
α∈J

µS,α(1πα(V )) = lim
α∈J

|πα(V ) ∩Aα|+ |πα(V ) ∩Bα|
|Aα|+ |Bα|

= lim
α∈I

|πα(V ) ∩Aα|
|Aα|

.

Put. One concludes observing that, for α big enough (so that V is α-saturated), the term in the limit
on the right-hand side of (27) is µUα(1V ). �
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2.3.1. Close pairs of subsets.

Definition 2.37. We say that two subsets S, T of X form a close pair if

(28) lim
α∈J

|πα(S)∆πα(T )|
|πα(S ∪ T )|

= 0

where ∆ denotes the symmetric difference.

Example 2.38. Lemma 2.1 implies that the image under πα of a subset and of its closure are the
same, for every α ∈ J . Therefore any S ⊆ X forms a close pair with its own closure.

Remark 2.39. Instead of checking (28), it might be more convenient to consider the equivalent
condition

(29) lim
α∈J

|πα(S)∆πα(T )|
|πα(S) ∩ πα(T )|

= 0.

Lemma 2.28 has the following generalization.

Proposition 2.40. If S and T form a close pair, then either they have the same procounting measure
or both their procounting measures do not exist.

Proof. For α ∈ J , put Bα = πα(S) ∩ πα(T ), Aα = πα(S) − Bα and Cα = πα(T ) − Bα . Thus for a
compact open V ⊆ X we have

µS,α(1πα(V )) =
|πα(V ) ∩Aα|
|Aα|+ |Bα|

+
|πα(V ) ∩Bα|
|Aα|+ |Bα|

and

µT,α(1πα(V )) =
|πα(V ) ∩ Cα|
|Cα|+ |Bα|

+
|πα(V ) ∩Bα|
|Cα|+ |Bα|

Moreover, the closeness hypothesis can be rewritten as

lim
α∈J

|Aα|+ |Cα|
|Aα|+ |Bα|+ |Cα|

= 0 ,

which implies

lim
α∈J

|Aα|
|Bα|

= 0 = lim
α∈J

|Cα|
|Bα|

and therefore

lim
α∈J

µS,α(1πα(V )) = lim
α∈J

|πα(V ) ∩Bα|
|Bα|

= lim
α∈J

µT,α(1πα(V ))

if the limits exist. �

Let ∂XS denote the boundary of S as a subset of X.

Proposition 2.41. If µX(∂S) = 0 6= µX(S), then S and its interior form a close pair.

Proof. By Lemma 2.28, we can assume that S is closed. For any α ∈ J , let

Aα := {x ∈ Xα | π−1α (x) ⊆ S}

and Bα := πα(S) − Aα . Then A := ∪απ−1α (Aα) is the interior of S, while ∩απ−1α (Bα) = ∂S. The
hypotheses then imply

0 < µX(S) = lim
α∈J

|Aα|+ |Bα|
|Xα|

and

0 = µX(∂S) = lim
α∈J

|Bα|
|Xα|

,

(because β > α implies Bβ ⊆ Bα) which, together, yield

lim
α∈J

|Bα|
|Aα|

= 0.

�
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Remark 2.42. Since the boundary has measure zero, the condition µX(S) 6= 0 becomes equivalent
to stating that S has nonempty interior as a subset of X. If this were to fail, then supU µU would be
trivially zero. However there are many interesting cases of sets whose closure has empty interior and
to which one can attach a nontrivial measure: one case we are going to discuss in detail is the set of

primes P in X = Ẑ.

Lemma 2.43. If S, T and T,U form close pairs, then so do S,U .

Sketch of proof. One has to check that |πα(S)∩πα(T )∩πα(U)| grows much faster than the cardinality
of its complement in πα(S)∪πα(T )∪πα(U). This can be achieved by writing the latter set as a disjoint
union of seven parts, according to the various inclusion relations, and then applying the hypotheses
and (29). For example, one has

lim
α∈J

|πα(S)− (πα(T ) ∪ πα(U))|
|(πα(S) ∩ πα(T ))− πα(U)|+ |πα(S) ∩ πα(T ) ∩ πα(U)|

= 0

because S and T form a close pair. Verifying all details is simple but cumbersome and we leave the
task to the reader. �

Lemma 2.43 immediately implies that forming a close pair is an equivalence relation. More inter-
esting for us is the following consequence.

Corollary 2.44. If S and T form a close pair, so do their closures.

Proof. By Lemma 2.43 and Example 2.38. �

3. Closed subsets of D̂

3.1. The ring D̂. Let F be a global field. We fix a finite set S of places of F (containing the
archimedean ones, if there are any) and let D be the ring of S-integers in F : that is,

D :=
{
x ∈ F | v(x) > 0 for all v /∈ S

}
.

Let I(D) denote the set of all non-zero ideals of D and P(D) the subset of non-zero prime ideals. We
define

(30) D̂ := lim←−D/a

where the limit is taken over a ∈ I(D). Each reduction modulo a map πa : D � D/a extends by
continuity to a ring homomorphism

π̂a : D̂ � D/a .

By construction there is a canonical injection of D into D̂ and in the following we will always think of

D as a (dense) subring of D̂.
For every p ∈ P(D), we also have the p-adic completion

D̂p := lim←−D/p
n.

These objects are related by a canonical isomorphism of topological rings

(31) D̂ '
∏

p∈P(D)

D̂p

(a proof can be found in [10, Theorem 2.1]). For simplicity, in the following we shall usually think of

(31) as an equality. A consequence is that for every p there is a canonical projection π̂p∞ : D̂ → D̂p.

Each ring D̂p is endowed with a discrete valuation, which, composing with π̂p∞ , yields a valuation

vp : D̂ −→ N ∪ {∞}

which extends the p-adic valuation on D. Note also that the canonical injection of D into D̂p factors
via the map π̂p∞ .

By abuse of notation, we shall use the symbols π̂• also when the domain is D̂n, with n > 1.
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3.1.1. Some notations. The following notations shall be used throughout this paper:

• X̂ is the closure of X ⊆ D̂n

• for I any ideal of D̂, its index is denoted

(32) ‖I‖ := |D̂/I| ∈ N ∪ {∞}

and given a ∈ D̂ we use the shortening ‖a‖ for ‖aD̂‖;
• D̂∗ is the group of units of D̂ (not to be confused with D̂∗, the closure of D∗ in D̂).

In the case of an ideal a of D, it is easy to check that one has â = aD̂; moreover the equality

D/a = D̂/â

holds for every a ∈ I(D).

3.2. Eulerian sets. Following [10, Definition 6.1], we say that X ⊂ D̂n is Eulerian if

X̂ =
∏
p

X(p) ,

where X(p) is the closure of π̂p∞(X) in D̂n
p . If moreover each X(p) is open, we say that X is openly

Eulerian. For example, coprime pairs in Z2 are an openly Eulerian subset of Ẑ2 (this is a special case
of [10, Corollary 6.11]).

Remark 3.1. Since each X(p) is compact, so is their product. Because D̂ is Hausdorff, it follows that
the inclusion

(33) X̂ ⊆
∏

p∈P(D)

X(p)

always holds. The hard part in showing that a set is Eulerian is to prove the opposite inclusion.

Theorem 3.2. If X ⊆ D̂n is be openly Eulerian, then the procounting measure µX exists.

Proof. Since each X(p) is compact open, Lemma 2.29 yields the existence of µX(p) ∈ D(D̂p,R). Now

apply Proposition 2.35 to obtain the procounting measure of X̂. By Lemma 2.28, this is the same as
µX . �

Remark 3.3. The results used in the proof of Theorem 3.2 are true for distributions with coefficients in
any field of characteristic 0: therefore, if X is openly Eulerian, one has µX ∈ D(X,Qp) for every prime
p. This gives hopes for a possible connection of our theory with p-adic zeta functions. Indeed, taking

(say) X = Ẑ∗, the procounting measure is just the Haar measure on Ẑ∗, which is deeply connected
with the Riemann zeta function; and the latter famously admits p-adic interpolation.

In the following, we shall say that X is almost openly Eulerian if it forms a close pair with an openly
Eulerian set.

Corollary 3.4. If X ⊆ D̂n is almost openly Eulerian, then its procounting measure exists.

Proof. Obvious from Proposition 2.40. �

Lemma 3.5. Let S, T ⊆ D̂ be openly Eulerian. If they are both closed in D̂, then also S ∩T is openly
Eulerian.

Proof. If S and T are openly Eulerian, the statement reduces to the obvious equalities

S ∩ T =
(∏

S(p)
)
∩
(∏

T (p)
)

=
∏(

S(p) ∩ T (p)
)
.

�

Remark 3.6. Some form of openness is necessary: if S and T are only Eulerian, then S′ close to S

does not imply that S′ ∩T is close to S ∩T . For an example, take D = Z, S = {1}∪ 2Ẑ, S′ = {3}∪ 2Ẑ
and T = {1}.
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3.2.1. Prime elements. Recall that the prime elements of D are those irreducible x ∈ D such that the
ideal xD is prime. Coherently with the notation of [10], we shall denote the set of such elements by
Irr(D).

The closure of Irr(D) was computed in [10, Theorem 3.2], which proves the equality

(34) Îrr(D) = D̂∗ t D̂∗ Irr(D) .

Here D̂∗ is the closure of D∗ in D̂. Note that D̂∗ is a subgroup of D̂∗ and it is much smaller than the
latter: actually, the index is infinite (see [10, Proposition 3.7] for a proof).

Theorem 3.7. The sets D̂∗ and Irr(D) form a close pair.

Proof. Let n ∈ I(D). By (34) and Lemma 2.1, we obtain

π̂n(Irr(D)) = (D/n)∗ t π̂n(D∗)Tn ,

where Tn is a set of non-associated primes of D dividing n. Since π̂n(D̂∗) = (D/n)∗, it suffices, by (29),
to prove

(35) lim
n→0

|π̂n(D∗)| |Tn|
|(D/n)∗|

= 0 .

Without loss of generality, we can assume vp(n) >?? for every prime ideal p dividing n. By the
Chinese remainder theorem, there is a surjective homomorphism

ψn : (D/n)∗ −→→
∏
p|n

(Dp/p
vp(n))∗/((Dp/p

vp(n))∗)2 .

The assumption vp(n) >?? implies that each factor (Dp/p
vp(n))∗ is an abelian group of even order.

Hence we obtain

|ψn

(
(D/n)∗

)
| > 2ω(n) ,

where ω : I(D) → N is the function which counts how many distinct primes divide an ideal. On the
other hand, Dirichlet’s unit theorem (in its S-units version) states that D∗ is a finitely generated group
of rank |S| − 1 and with cyclic torsion: hence ψn

(
π̂n(D∗)

)
is at most a product of |S| cyclic groups of

order 2 and therefore

|ψn

(
π̂n(D∗)

)
| 6 2|S| .

Together with the obvious inequality |Tn| 6 ω(n), this implies

|π̂n(D∗)| |Tn|
|(D/n)∗|

6
|ψn

(
π̂n(D∗)

)
|ω(n)

|ψn

(
(D/n)∗

)
|
6

2|S| ω(n)

2ω(n)
.

Equality (35) follows by noticing lim
n→0

ω(n) = +∞. �

Remark 3.8. The proof above also implies [D̂∗ : D̂∗] =∞, by an argument avoiding any use of zeta
functions (differently from [10, Proposition 3.7]).

Corollary 3.9. The set Irr(D) is almost openly Eulerian. The procounting measure µIrr(D) is the

Haar measure of the compact group D̂∗.

Proof. It suffices to observe that D̂∗ is openly eulerian, since (31) implies D̂∗ =
∏
D̂∗p and the group

of units is compact open in each ring D̂p. �

3.2.2. Polynomial images and preimages. It is straightforward to check that polynomial images are
Eulerian.

Proposition 3.10. For any f ∈ D[x1, ..., xn] and X ⊆ Dn, one has:

(a) if X is Eulerian, then so is f(X);

(b) if f(X) is Eulerian and X̂ is the closure of f−1
(
f(X)

)
, then X is Eulerian.

Proof. This is [10, Proposition 6.6]. �
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Example 3.11. The image of a degree 1 polynomial is an ideal coset. The next simplest example is
f(x) = x2, in which case for D = Z one has

f(Zp) = {0} t
⊔
n∈N

p2nf(Z∗p)

where

f(Z∗p) =

{
1 + 8Z2 if p = 2

µ(p−1)/2 × (1 + pZp) if p 6= 2

as discussed in [20, II, §3.3]. (Here µn denotes the group of roots of unity of order n in Zp .)

Polynomial image can be approximated by openly Eulerian sets.

Lemma 3.12. For every non-zero polynomial f ∈ D[x], one has f(D̂p) = Up t Vp, where Up is open
and Vp finite.

Proof. Let f ′ be the derivative of f and define

Zp := {α ∈ D̂p | f ′(α) = 0} .

Now we can take Vp := f(Zp) and Up := f(D̂n
p ) − Vp. Indeed, Vp is finite because so is Zp. Given

a0 = f(α) ∈ Up, it follows f ′(α) 6= 0 for some i. Hence, for |a − a0| small enough we have that α
approximates a zero of the polynomial

f(α)− a.
Thus, by Hensel Lemma, we have β ∈ D̂p such that f(β) = a. This shows that Up is open. �

Corollary 3.13. For every f ∈ D[x1, ..., xn], one has

f(D̂) = U t V
where U =

∏
Up e µ(V ) = 0.

Proof. It follows from Lemma 3.12 and the equality f(D̂n) =
∏

p f(D̂n
p ) proved in Lemma ??. �

The set U ∩ D is not openly Eulerian since U is not closed. Nonetheless, covering U with an
increasing family of open compact (Ui)i, we get that Ui ∩D is openly Eulerian. Consequently, f(D)
can be approximated by openly Eulerian sets.

Corollary 3.14. Let f : D → Dd be a polynomial map. Then, for X = f̂(D) ⊂ D̂d, the distribution
µX exists.

Proof. By Lemma ??, we have that X is quasi-Eulerian; more explicitly

f̂(D) = (
∏
p

Yp ∪ Vp)

where every Vp is a closed set of measure zero. �

Remark 3.15. Consider the polynomial x21 + x22 + x23 + x24. Lagrange’s four-squares theorem implies
that f(Z4

p) = Zp for every p, but f(Z) = N. In this case, the problem clearly lies in the fact that we
ignore the Archimedean prime. From the point of view studied in [14] and [10], the issue is that f(Z)
is Eulerian, but not closed.

3.3. Bateman-Horn conjecture.

Proposition 3.16. Given f1, . . . , fk ∈ D̂[x] satisfying the same local hypothesis as in Conjecture 1.1,

let ϕ : D̂ → D̂k be the map a 7→
(
f1(a), . . . , fk(a)

)
. Then the set ϕ−1

(
(D̂∗)k

)
admits a procounting

measure.

Proof. We show that ϕ−1
(
(D̂∗)k

)
is almost openly Eulerian.

For i ∈ {1, . . . , k}, consider Yi = f−1i
(
fi(D̂) ∩ D̂∗

)
, so to have

ϕ−1
(
(D̂∗)k

)
=

k⋂
i=1

Yi .
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By Proposition 3.10.(a) one has

fi(D̂) ∩ D̂∗ =
∏
p

fi(D̂p) ∩
∏
p

D̂∗p =
∏
p

(
fi(D̂p) ∩ D̂∗p

)
,

showing that the hypotheses of Proposition 3.10.(b) apply. Therefore each Yi is Eulerian and we obtain

ϕ−1
(
(D̂∗)k

)
=

k⋂
i=1

∏
p

Yi(p) =
∏
p

k⋂
i=1

Yi(p) .

In order to conclude the proof, it suffices to check that µD̂p

(
∂(∩iYi(p))

)
= 0 holds for every p. This

follows from Lemma 3.12. �

Remark 3.17. µϕ−1((Ẑ∗)k)(p) =

Conjecture 3.18. Under the same hypotheses as in Conjecture 1.1 we have that the following limit
exists and

lim
n→0

µn,ϕ−1(Pk) = µϕ−1((D̂∗)k) .

We now provide some specific examples, testing our conjecture in the case of the famous Theorem
of Dirichlet on arithmetic progressions of prime numbers (where k = deg(f) = 1), and also in the case
of the twin primes situation, where k = 2, f1(x) = x and f2(x) = x + 2. We will then conclude by
proving that it implies that Schinzel’s hypothesis is true.

3.3.1. Case 1: Dirichlet’s Theorem. In its quantitative formulation, Dirichlet’s Theorem on arithmetic
progressions states that, given a, b ∈ N, (a, b) = 1, then

das,P((a+ bZ) ∩ P) =
1

ϕ(b)

(where das,P denotes the relative density of a subse of P). As anticipated, we are here in a situation
where k = deg(f) = 1, where f(x) = a+ bx. If we apply our profinite reformulation of Bateman-Horn
conjecture to this case, we first note that if m ∈ Z is such that a+ bm ∈ P, then m ∈ b−1P − a

b . Then

f−1(P̂) =
1

b
P̂ − a

b
= (

1

b
Ẑ∗ − a

b
) t f−1(P).

For any n ∈ N we remark that

π̂n(f−1(P̂)) = f−1n (π̂n(P̂))

where fn : Ẑ/nẐ→ Ẑ/nẐ is defined so to have π̂n ◦ f = fn ◦ π̂n .
Now, we assume that p ∈ P is such that p|b. In this case we have that

f−1
pvp(n)(π̂pvp(n)(P)) = {x ∈ Z/pvp(n)Z : a+ bx ∈ (Z/pvp(n)Z)∗ t {p}} = Z/pvp(n)Z

where the first equality follows by the profinite formulation of Dirichlet’s Theorem on arithmetic
progressions:

P̂ = Ẑ∗ t P
and the second equality follows by our assumption that a and b are coprime, and using the hypothesis
that p|b.

If, instead, p - b, we have that

f−1
pvp(n)(π̂pvp(n)(P)) = {(Z/pvp(n)Z)∗ − a

b
} t {p− a

b
}.

For this reason, it follows that

π̂n(f−1(P̂)) =
∏
p|b

Z/pvp(n)Z×
∏
p-b

{(Z/pvp(n)Z)∗ − a

b
} t {p− a

b
}.

In particular, we have that

|π̂n(f−1(P̂))| =
∏

p|(n,b)

pvp(n) ×
∏

p|n,p-b

(|(Z/pvp(n)Z)∗|+ 1).
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Therefore

π̂n(f−1(P̂))) =
1

|π̂n(f−1(P̂))|

∑
x∈π̂n(f−1(P̂))

δx =
∏
p|n

∏
p|b

µZp ×
∏
p-b

µ{Z∗p−a/b}

×∏
p-n

µZp

as Zp and Z∗p are all open groups, on which the definition of the corresponding measure is straight-
forward and coincident with the distributional construction we make in Definition 2.21. We can now
easily conclude that

lim
n→0

µn,f−1(P̂) =
∏
p|b

µZp ×
∏
p-b

µZ∗p .

It is also easy to see that

µf−1(Ẑ∗) =
∏
p|b

µZp ×
∏
p-b

µZ∗p−a/b.

This provides confirmation of Conjecture 1.2 in the specific case of Dirichlet’s Theorem.

3.3.2. Case 2: Twin primes. The famous Twin Primes Conjecture states in its quantitative formulation
that if we take k = 2, f = (f1, f2), such that f1(X) = X and f2(X) = X+2, we then have the following

|{m ∈ N ∩ [2, x] : f1(m) = m and f2(m) = m+ 2 ∈ P}| ∼x→+∞ 2
∏
p≥3

p(p− 2)

(p− 1)2

∫ x

2

dt

(log(t))2
.

In this specific situation our proposed Conjecture 1.2 would be that

lim
n→0

µn,f−1
1 (P)∩f−1

2 (P) = µf−1((Ẑ∗)2) .

While computing the limit above appears extremely hard, we can easily provide a specific description
of the right hand side.

In particular, if we express the general element (xp)p∈P of Ẑ∗ =
∏
p∈P Z∗p as a string with its

components labeled by the prime integers, we first remark that

x2 ∈ Z∗2 ⇐⇒ x2 + 2 ∈ Z∗2

easily.
If p 6= 2, we then remark that

xp ∈ f−1((Z∗p)2) ⇐⇒ xp ∈ Z∗p ∩ (Z∗p − 2).

Therefore

f−1((Ẑ∗)2) = Z∗2 ×
∏
p 6=2

(Z∗p ∩ (Z∗p − 2)).

As it is not hard to show that if p 6= 2, then

Z∗p ∩ (Z∗p − 2) = Z∗p \ 2Ker(π∗p)

where

π∗p : Z∗p � (Z/pZ)
∗

it then follows that

µẐ∗(f
−1((Ẑ∗)2)) =

∏
p>2

(
1− 1

p− 1

)
.

In particular, the distribution associated to f−1((Ẑ∗)2) will be described as

µf−1((Ẑ∗)2) = µZ∗2 ×
∏
p>2

p− 2

p− 1
µZ∗p∗.
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3.3.3. Case 3: Landau’s conjecture. Another relevant case where Conjecture 1.2 can be tested and
shows notable similarities with the classic formulation is represented by the famous Landau’s conjec-
ture, stating that there are infinitely many primes of the form

n2 + 1

with n ∈ N. In particular, as in the previous case we are able to provide an explicit expression to the
measure µf−1(Ẑ∗), where f(X) = X2 + 1.

We start by noting that

f−1(Ẑ∗) = {x ∈ Ẑ, such that x2 + 1 ∈ Ẑ∗} =
∏
p∈P
{xp ∈ Zp, such that x2p + 1 ∈ Zp∗}.

Obviously, x22 + 1 ∈ Z2
∗ if and only if x2 ∈ 2Z2. Also, if p > 2, we have that

xp
2 + 1 ∈ Zp∗ ⇐⇒ xp

2 6≡ −1 mod (p)

which means that

f−1(Zp∗) =

{
Zp if p ≡ 3 mod (4)

Zp \ Up if p ≡ 1 mod (4),

where

Up = (αp + pZp) t (βp + pZp) for some αp, βp ∈ Zp such that αp
2 = βp

2 = −1.

In particular, we have that

f−1(Ẑ∗) = 2Z2

∏
p≡3 mod (4)

Zp
∏

p≡1 mod (4)

(Zp \ Up) ,

hence

µZ(f−1(Ẑ∗)) =
1

2

∏
p≡1 mod (4)

(
1− 2

p

)
.

We now remark that

ωf (p) =


1 if p = 2

2 if p ≡ 1 mod (4)

0 if p ≡ 3 mod (4).

The Bateman-Horn constant is for this reason as follows:

C(f) =
∏
p∈P

(
1− 1

p

)−1(
1− ωf (p)

p

)
=

∏
p≡1 mod (4)

p

p− 1

(
1− 2

p

) ∏
p≡3 mod (4)

(
1− 1

p

)−1
=

=
∏

p≡1 mod (4)

p− 2

p− 1

∏
p≡3 mod (4)

(
1− 1

p

)−1
.

We then conclude that

µẐ(f−1(Ẑ∗)) = C(f)
∏
p∈P

(
1− 1

p

)
.

Therefore

µf−1(Ẑ∗) = C(f)
∏
p∈P

(
1− 1

p

)
µZp .
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3.3.4. Schinzel’s hypothesis. Here we formulate (unfortunately without any idea of how to prove it) a
profinite versione of celebrated Schinzel’s hypothesis in our profinite setting.

Let f1, ..., fd be a collection of irreducible polynomials over Z with positive leading coefficient and
such that there is no prime number p which divides f1(n) · · · fd(n) for all n ∈ Z, and consider the map
φ : Z→ Zd sending n 7→ (f1(n), ..., fd(n)). Then, the classical Schinzel’s conjecture states that fi(n)’s
are all coprime for infinitely many n ∈ Z. Let f be the product of the fi’s.

Conjecture 3.19 (Profinite H Hypothesis). If f(Ẑ) ∩ Ẑ∗ 6= ∅ then the set φ(N) ∩ Pd is infinite.

Proposition 3.20. Conjecture 3.19 is equivalent to the classical H hypothesis.

Proof. Fix f as above. Then we notice that f(Ẑ)∩ Ẑ∗ 6= ∅ if and only if there exists an open such that

f(Ẑ) ⊆
⋃
i6r piẐ where the union, by compactness, can be taken finite.

This is equivalent to the existence of a prime p such that f(Ẑ) ⊆ pẐ. If not, by contradiction, for all

i there would exist a ni such that f(ni) /∈ pẐ. Thus, since a = b mod p implies that f(a) = f(b) mod p,

taking n = ni mod p for all i we would obtain f(n) /∈
⋃
i6r piẐ.

Moreover it follows from the density of Z in Ẑ and the fact that pẐ is closed that f(Ẑ) ⊆ pẐ is again
equivalent to f(N) ⊆ pZ.

Therefore f(Ẑ) ∩ Ẑ∗ 6= ∅ if and only if there is no prime p such that f(N) ⊆ pZ. �

Proposition 3.21. Conjecture 1.2 implies Conjecture 3.19.

Proof. Assume by contradiction that Conjecture 3.19 is false. It would then follow that φ−1(Pd) is
finite. In particular, for any n ∈ N we would have that

µn,φ−1(Pd) =
1

|πn(φ−1(Pd))|
∑

x∈φ−1(Pd)

δx

would be a finite sum of Dirac peaks, and the same would clearly remain true by projecting on the

p-adic component Zp of Ẑ (after natural extension of φ as a function from Ẑ to Ẑ. At the same time,
as the set φ−1(Pd) is quasi-Eulerian, the hypotheses of Theorem ?? hold, and this implies that it is
possible to associate a distribution to it, which will be of the form

µφ−1(Pd) =
∏
p∈P

1Up µZp

where

φ−1(Pd) =
∏
p∈P

Up
⊔
V

where Up are compact open sets and V has Haar measure 0. But if we assume Conjecture 1.2 to be
true, it then follows that such a distribution will have to coincide with a finite sum of Dirac peaks, as
being the set φ−1(Pd) finite, taking the inverse limit for n → 0 of µn,φ−1(Pd) will give again a finite
sum of Dirac peaks on each p-adic component. And this is obviously impossible. �

Appendix A. A numerical experiment

We have tested Conjecture 1.2 in the particular case where k = 1 and ϕ(x) = x + 2, which turns
it into the more specific famous Twin Primes Conjecture, by numerical experiments which seem to
confirm it, but involving an unexpectedly high number of twin primes for the relatively small quotients
which have been involved. We warmly thank Dr. Alejandro Vidal Lopez (Xi’an Jiaotong - Liverpool
University) for the manual set up of a working computer code and his higher knowledge in numerical
methods. Let us call

S := ϕ−1(Ẑ∗).
If φn is the projection of Ẑ onto Z/nZ for some n ∈ N, we call

Sn := πn(S).

More specifically

Sn = {[a] ∈ Z/nZ such that [a], [a+ 2] ∈ (Z/nZ)∗}.
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If Conjecture 1.2 is true, then Sn should be contained in the projection modulo n of all the twin primes,
for all n ∈ N − {0, 1}. We have verified this fact for n = k!, where k 6 10. The software we used is
Python and the list of twin primes was generated by the computer as well using a list of the first prime
numbers up to 1 billion. This turned out to be necessary already for k = 8. We describe the code here
below.

Code in Python:

import math

number = 10

# bigNumber:

# denotes number! We consider the group Z/(bigNumber)Z

bigNumber = math.factorial(number)

# primeDecompPrimes:

# primes in the prime decomposition of number (not including 2

# used to calculate the units of Z/(bigNumber)Z

primeDecompPrimes = [3,5,7]

units = []

# Sieve of units.

# We start by adding only odd numbers to the sieve.

# In this way we avoid removing multiples of 2.

for k in range(math.floor(bigNumber/2)):

units.append(2*k+1)

# We remove all the elements not co-prime with (bigNumber)

# using the information in primeDecompPrimes.

for prime in primeDecompPrimes:

i = 1

while i*prime < bigNumber:

# We try to remove the number i*prime.

# If the number was removed before, an exception will be launch.

# In such a case, we catch the exception and ignore it.

try:

units.remove(i*prime)
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except:

pass

i += 1

# We write the units of Z/(bigNumber)Z into a file so that

# it does not need to be recalculated.

fileNameUnits =’units_’+str(bigNumber)

fileUnits = open(fileNameUnits, ’w’)

for n in units:

fileUnits.write(str(n)+’\n’)

fileUnits.close()

# We calculate the twin units in Z/(bigNumber)Z.

twinUnits = []

for n in range(len(units)-1):

if units[n+1] - units[n] == 2:

twinUnits.append(units[n])

if units[-1] == bigNumber -1:

twinUnits.append(units[-1])

# We save the twin units so that we do not need to calculate them again.

fileNameTwinUnits =’twinUnits_’+str(bigNumber)

fileTwinUnits = open(fileNameTwinUnits, ’w’)

for n in twinUnits:

fileTwinUnits.write(str(n)+’\n’)

fileTwinUnits.close()
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# We load the list of twin primes up to 10^9.

# This list was calculated from the list of primes under 10^9,

# generated using the prime_sieve package (see https://pypi.org/project/prime-sieve/)

fileNameTwinPrimes = ’list-of-twinsSieve.txt’

fileTwinPrimes = open(fileNameTwinPrimes, ’r’)

twinPrimes =[]

for line in fileTwinPrimes:

twinPrimes.append(int(line))

fileTwinPrimes.close()

# Finally we calculate the list of twin primes having

# a twin unit of Z/(bigNumber)Z as residue when

# taking modulo (bigNumber).

# We remove those residues from the list of twin units

# and add them to the file finalList_(number).

fileNameFinalList = ’finalList_’ + str(number)

fileFinalList = open(fileNameFinalList, ’w’)

finalList=[]

for prime in twinPrimes:

numberToCheck = prime % bigNumber

if numberToCheck in twinUnits:

twinUnits.remove(numberToCheck)

finalList.append(numberToCheck)

fileFinalList.write(str(numberToCheck)+’\n’)

fileFinalList.close()

The produced lists of numbers are available at the following link: ————–
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