
SHILDOVSKY LEMMA
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Let
Lvy = ẏ −Ay = 0, A ∈ Mn×n(C(t)), A(0) ̸= ∞ (1)

be a linear system of differential equations with rational coefficients with t = 0 being an ordinary
point.

Let P = (p1, ..., pn) ∈ (C[t]n)∗, degP ≤ N , for some N ≫ OA(1) and let Pi = (L∗
v)

i−1P ,

i = 1, ..., where L∗
vP = Ṗ + PA. By induction

Pi · z = (P · z)(i−1) (2)

for any solution z = z(t) of (1).
Let Pr be a matrix of rational functions whose rows are P1, ..., Pr.

Lemma 0.1 (Shidlovsky). Assume that

rkP∞ = m ≤ n. (3)

Then
mult0 Py ≤ Nm+OA(1) (4)

for any solution y ∈ C((t))n of (1) such that Py ̸≡ 0.

The simplest case. The simplest particular case of this Lemma is the following familiar one:

Lemma 0.2. Let
T = ∂n + a1(t)∂

n−1 + · · ·+ an(t) (5)

be a linear differential operator, and assume that t = 0 is its ordinary point. Then any solution
z(t) of Tz = 0 has a zero of multiplicity at most n− 1 at 0.

This follows from the theorem about the existence and uniqueness of solutions of systems of
ODEs.

Alternatively, let z1, ..., zn be a fundamental system of solutions of Ty = 0, and let W =

W (z1, ..., zn) = (z
(i−1)
j ) be their Wronskian. detW cannot vanish at an ordinary point, so

0 = mult0 detW ≥ mult0 z1 − (n− 1) (6)

as the first column of W is divisible by tmult0 z1−(n−1) and the rest is analytic at t = 0.

Proof in the case m = n. In this case the proof is simpler, so we give it separately to
emphasize the main idea.

Write
Pn+1 + a1(t)Pn + ...+ anP1 = 0, ai ∈ C(t).

The corresponding linear differential operator (5) has n linearly independent solutions of form
zj = P · yj , where y1, ..., yn is a fundamental system of solutions of (1). We have by (2)

detW (z1, ..., zn) = det(z
(i−1)
j ) = det (Pn ·X) , (7)

where X = (y1|...|yn) is the fundamental matrix of (1).
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Clearly detX ̸= 0, so

mult0 detW = mult0 detPn ≤ deg(detPn) = Nn+OA(1).

On the other hand, by (6)

mult0 detW ≥ mult0 z1 − (n− 1) = mult0(P · y1)− (n− 1).

0.1. Proof for m < n. Applying L∗
V to

Pm+1 + a1(t)Pm + ...+ amP1 = 0, ai ∈ C(t),
one gets

Pm+2 + ã1(t)Pm + ...+ ãmP1 = 0.

Thus necessarily m = rkP∞ = rkPm = m. Denote

V (t) = ∩ kerPi(t) = ∩m
i=1 kerPi(t), dimC(t) V = n−m.

The key observation is that

Proposition 0.3. V (t) is invariant under the flow of (1).

Indeed, let z(t) be a solution of (1), z(t0) ∈ V (t0) for some ordinary point t0. Then (Pz)k(t0) =
Pkz(t0) = 0 for all k ≥ 1, so Pz ≡ 0 and z(t) ∈ V (t) for all t.

Now, choose solutions z1, ..., zn−m of (1) such that {zi(t0)} is a basis of V (t0) for some t0 close
to 0. Then zi(0) are still linearly independent, and span

V (0) = lim
t→0

V (t), dimC V (0) = n−m.

Complete the tuple z1, ..., zn−m to a basis

X(t) = (y1|...|ym|z1|...|zn−m)

of solutions of (1). Clearly, detX(0) ̸= 0. Let

Xy =
(
y1 .... ym

)
, Xz =

(
z1 .... zn−m

)
,

so X =
(
Xy Xz

)
.

Wronskian. As before,
Pm ·Xy = W (Py1, ..., Pym),

so by (6)
mult0 det(Pm ·Xy) ≥ mult0(Py1)− (m− 1). (8)

Covolume. Let E ∈ Mm×n(C) be an m× n submatrix of In×n such that det(EXz(0)) ̸= 0 and

denote Q =

(
Pm

E

)
. Then, as PmXz = 0,

QX =

(
PmXy 0
EXy EXz

)
and therefore

detQ · detX = det(QX) = det(PmXy) · det(EXz). (9)

Both detX and detEXz are holomorphic and non-vanishing at 0. Thus

mult0 det(PmXy) = mult0 detQ ≤ deg detQ ≤ Nm+OA(1). (10)

Comparing (8) and (10) we get (4).
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