SHILDOVSKY LEMMA

DMITRY NOVIKOV

Let

$$L_v y = \dot{y} - Ay = 0, \quad A \in M_{n \times n}(\mathbb{C}(t)), A(0) \neq \infty$$
(1)

be a linear system of differential equations with rational coefficients with t = 0 being an ordinary point.

Let $P = (p_1, ..., p_n) \in (\mathbb{C}[t]^n)^*$, deg $P \leq N$, for some $N \gg O_A(1)$ and let $P_i = (L_v^*)^{i-1}P$, i = 1, ..., where $L_v^*P = \dot{P} + PA$. By induction

$$P_i \cdot z = (P \cdot z)^{(i-1)} \tag{2}$$

for any solution z = z(t) of (1).

Let \mathcal{P}_r be a matrix of rational functions whose rows are $P_1, ..., P_r$.

Lemma 0.1 (Shidlovsky). Assume that

$$\operatorname{rk}\mathcal{P}_{\infty} = m \le n. \tag{3}$$

Then

$$\operatorname{mult}_{0} Py \le Nm + O_{A}(1) \tag{4}$$

for any solution $y \in \mathbb{C}((t))^n$ of (1) such that $Py \neq 0$.

The simplest case. The simplest particular case of this Lemma is the following familiar one:

Lemma 0.2. Let

$$T = \partial^n + a_1(t)\partial^{n-1} + \dots + a_n(t) \tag{5}$$

be a linear differential operator, and assume that t = 0 is its ordinary point. Then any solution z(t) of Tz = 0 has a zero of multiplicity at most n - 1 at 0.

This follows from the theorem about the existence and uniqueness of solutions of systems of ODEs.

Alternatively, let $z_1, ..., z_n$ be a fundamental system of solutions of Ty = 0, and let $W = W(z_1, ..., z_n) = (z_j^{(i-1)})$ be their Wronskian. det W cannot vanish at an ordinary point, so

$$0 = \operatorname{mult}_0 \det W \ge \operatorname{mult}_0 z_1 - (n-1) \tag{6}$$

as the first column of W is divisible by $t^{\text{mult}_0 z_1 - (n-1)}$ and the rest is analytic at t = 0.

Proof in the case m = n. In this case the proof is simpler, so we give it separately to emphasize the main idea.

Write

$$P_{n+1} + a_1(t)P_n + \dots + a_nP_1 = 0, \quad a_i \in \mathbb{C}(t)$$

The corresponding linear differential operator (5) has n linearly independent solutions of form $z_j = P \cdot y_j$, where $y_1, ..., y_n$ is a fundamental system of solutions of (1). We have by (2)

$$\det W(z_1, \dots, z_n) = \det(z_j^{(i-1)}) = \det\left(\mathcal{P}_n \cdot X\right),\tag{7}$$

where $X = (y_1|...|y_n)$ is the fundamental matrix of (1).

Date: December 2024.

Clearly det $X \neq 0$, so

$$\operatorname{mult}_0 \det W = \operatorname{mult}_0 \det \mathcal{P}_n \le \operatorname{deg}(\det \mathcal{P}_n) = Nn + O_A(1).$$

On the other hand, by (6)

$$\operatorname{mult}_0 \det W \ge \operatorname{mult}_0 z_1 - (n-1) = \operatorname{mult}_0 (P \cdot y_1) - (n-1)$$

0.1. **Proof for** m < n. Applying L_V^* to

$$P_{m+1} + a_1(t)P_m + \dots + a_m P_1 = 0, \quad a_i \in \mathbb{C}(t)$$

one gets

$$P_{m+2} + \tilde{a}_1(t)P_m + \dots + \tilde{a}_m P_1 = 0.$$

~ () -

Thus necessarily $m = \operatorname{rk} \mathcal{P}_{\infty} = \operatorname{rk} \mathcal{P}_{m} = m$. Denote

$$V(t) = \cap \ker P_i(t) = \bigcap_{i=1}^m \ker P_i(t), \quad \dim_{\mathbb{C}(t)} V = n - m.$$

The key observation is that

Proposition 0.3. V(t) is invariant under the flow of (1).

Indeed, let z(t) be a solution of (1), $z(t_0) \in V(t_0)$ for some ordinary point t_0 . Then $(Pz)^k(t_0) = P_k z(t_0) = 0$ for all $k \ge 1$, so $Pz \equiv 0$ and $z(t) \in V(t)$ for all t.

Now, choose solutions $z_1, ..., z_{n-m}$ of (1) such that $\{z_i(t_0)\}$ is a basis of $V(t_0)$ for some t_0 close to 0. Then $z_i(0)$ are still linearly independent, and span

$$V(0) = \lim_{t \to 0} V(t), \quad \dim_{\mathbb{C}} V(0) = n - m$$

Complete the tuple $z_1, ..., z_{n-m}$ to a basis

$$X(t) = (y_1|...|y_m|z_1|...|z_{n-m})$$

of solutions of (1). Clearly, det $X(0) \neq 0$. Let

n

$$X_y = (y_1 \quad \dots \quad y_m), \quad X_z = (z_1 \quad \dots \quad z_{n-m}),$$

so $X = \begin{pmatrix} X_y & X_z \end{pmatrix}$.

Wronskian. As before,

$$\mathcal{P}_m \cdot X_y = W(Py_1, ..., Py_m),$$

so by (6)

$$\operatorname{nult}_0 \det(\mathcal{P}_m \cdot X_y) \ge \operatorname{mult}_0(Py_1) - (m-1).$$
(8)

Covolume. Let $E \in M_{m \times n}(\mathbb{C})$ be an $m \times n$ submatrix of $I_{n \times n}$ such that $\det(EX_z(0)) \neq 0$ and denote $Q = \begin{pmatrix} \mathcal{P}_m \\ E \end{pmatrix}$. Then, as $\mathcal{P}_m X_z = 0$,

$$QX = \begin{pmatrix} \mathcal{P}_m X_y & 0\\ EX_y & EX_z \end{pmatrix}$$

and therefore

$$\det Q \cdot \det X = \det(QX) = \det(\mathcal{P}_m X_y) \cdot \det(EX_z).$$
(9)

Both det X and det EX_z are holomorphic and non-vanishing at 0. Thus

$$\operatorname{mult}_0 \det(\mathcal{P}_m X_y) = \operatorname{mult}_0 \det Q \le \deg \det Q \le Nm + O_A(1).$$

$$(10)$$

Comparing (8) and (10) we get (4).

 $\mathbf{2}$