SHILDOVSKY LEMMA

DMITRY NOVIKOV

Let
Ly=9y—Ay=0, A€ M,x,(C(t)),A(0)# 0 (1)
be a linear system of differential equations with rational coefficients with ¢ = 0 being an ordinary
point.
Let P = (p1,...,pn) € (C[t]")*, degP < N, for some N > O4(1) and let P, = (L})""'P,
i=1,..., where L}P = P + PA. By induction
Poz= (P 20V (2)
for any solution z = z(t) of (1).
Let P, be a matrix of rational functions whose rows are P4, ..., P,.
Lemma 0.1 (Shidlovsky). Assume that
tkPoo =m < n. (3)
Then
multy Py < Nm + 04(1) (4)
for any solution y € C((¢))™ of (1) such that Py # 0.

The simplest case. The simplest particular case of this Lemma is the following familiar one:

Lemma 0.2. Let

T=0"+a1()0" ' 4 +an(t) (5)
be a linear differential operator, and assume that t = 0 is its ordinary point. Then any solution
2(t) of Tz =0 has a zero of multiplicity at most n — 1 at 0.

This follows from the theorem about the existence and uniqueness of solutions of systems of
ODEs.
Alternatively, let z1,...,2, be a fundamental system of solutions of Ty = 0, and let W =
W(z1, .oy 2n) = (z](-kl)) be their Wronskian. det W cannot vanish at an ordinary point, so
0 = multgdet W > multgz; — (n — 1) (6)
as the first column of W is divisible by ™ #1=("=1) and the rest is analytic at t = 0.
Proof in the case m = n. In this case the proof is simpler, so we give it separately to
emphasize the main idea.
Write
Pn+1+a1(t)Pn+...+anP1 =0, a; E(C(t)
The corresponding linear differential operator (5) has n linearly independent solutions of form
zj = P -y;, where y1, ..., y, is a fundamental system of solutions of (1). We have by (2)
i—1
det W (21, ..., 2) = det(zt' V) = det (P, - X), (7)
where X = (y1]...|yn) is the fundamental matrix of (1).
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Clearly det X # 0, so
multg det W = multg det P,, < deg(det P,,) = Nn+ O4(1).
On the other hand, by (6)
multy det W > multg z; — (n — 1) = multg(P - y1) — (n — 1).
0.1. Proof for m < n. Applying Lj, to
Poi1+a1(t)Py+ ... +anPL =0, a; €C(2),
one gets
Pryo+a1(t)Py + ... +am P =0.
Thus necessarily m = rk Po, = rk P,,, = m. Denote
V(t) = Nker Pi(t) = ML, ker Pi(t), dimgy) V =n—m.
The key observation is that
Proposition 0.3. V(t) is invariant under the flow of (1).

Indeed, let z(t) be a solution of (1), z(tg) € V (t) for some ordinary point tq. Then (Pz)*(t) =
Pyz(tg) =0 for all k > 1, so Pz =0 and z(t) € V(¢) for all ¢.

Now, choose solutions z1, ..., zn—m of (1) such that {z;(to)} is a basis of V(¢g) for some ty close
to 0. Then z;(0) are still linearly independent, and span

V(0) = tll_% V(t), dimcV(0)=n—m.
Complete the tuple z1, ..., z,_,, to a basis
X(t) = (yl‘|ym|zl‘|zn—m)
of solutions of (1). Clearly, det X(0) # 0. Let
Xy=(1 o ym), Xo=(21 ' Znem),
so X = (Xy XZ) .

Wronskian. As before,
7Drn : Xy = W(Py17 7Pym)7

so by (6)
multy det(Py, - Xy) > multg(Pyq1) — (m — 1). (8)
Covolume. Let E € M,,x,(C) be an m x n submatrix of I, such that det(FX.(0)) # 0 and
denote QQ = (PEm> Then, as P, X, =0,
_(PnXy, O
QX = <EXy EXZ)
and therefore
det Q - det X = det(QX) = det(P,,, X)) - det(EX,). (9)
Both det X and det EX, are holomorphic and non-vanishing at 0. Thus
multy det(P,, X,) = multo det Q < degdet Q@ < Nm + O4(1). (10)

Comparing (8) and (10) we get (4).
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