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1. They are among us

Néron models play a prominently technical role in several celebrated results in arithmetic geometry. On
the one hand, Faltings’ proof of Mordell conjecture1 [3] requires the Néron differential on the Néron model
of an abelian variety in order to define the Faltings height of such an abelian variety. At a deeper level,
his proof also requires Grothendieck’s semistable theorem for abelian varieties, which makes an essential
use of a result relating the Néron model of the Jacobian of a “nice” curve to the relative Picard scheme
of a “nice” integral model of the curve. We mention that the Néron differentials, and consequently the
Néron periods, also appear in the Birch–Swinnerton-Dyer conjecture as in [8]. In addition, the arithmetic
of cusp modular forms of weight 2 on a congruence subgroup of SL2(Z) is controlled by the Jacobian of
the associated complete modular curve. Such an approach was exploited in [5] and [7] as an important
step towards Fermat’s last theorem.

2. What is a Néron model?

2.1. Definition and first properties. We refer to [2] as the main reference for this section, and we
invite to explore Brian Conrad’s webpage for more excellent notes. Ler R be a discrete valuation ring,
K its fractions field and k its residue field. We point out that assuming the affine setting with R a dvr,
rather than S a Dedekind scheme2, does not imply any loss of content in this theory.

Ideally, the utopian model one dreams about is a proper, smooth R-model. In general, such a model
does not exists. In fact, roughly speaking “proper” means that the model is big enough not to miss any
points, while “smooth” means small enough to avoid singularities. Intuitively, for a smooth K-scheme X,
its Néron model X is the “best possible” smooth R-scheme extending X, and this essentially happens by
forgetting about properness and considering smoothness instead. Withouth any further ado, here is how
it is defined.

Definition 2.1. Let X be a smooth, separated K-scheme of finite type. A Néron model of X is a smooth,
separated, R-scheme X of finite type such that:

(1) (X , ϕ) is a R-model of X for a fixed ϕ : XK ' X;
(2) X satisfies the Néron Mapping Property (NMP), i.e., for every smooth R-scheme Y and every

K-morphism fK : YK →XK there exists a unique R-morphism f : Y →X whose pullback under
the canonical map j : SpecK → SpecR is fK , namely f ⊗R K = fK .

Denote, for a commutative unitary ring A, by SchA the category of smooth A-schemes. The NMP can
be reformulated by saying that the natural map

HomSchR(Y ,X )→ HomSchK (YK ,XK)

is a bijection. In more functorial terms, the NMP tells us that the pushforward functor j∗XK is represented
by X , viewed as its functor of points.

1A.k.a. Falting’s theorem.
2I.e., a connected normal Noetherian scheme of dimension 1.
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Now, for Y = SpecR, the NMP implies that every K-point SpecK → XK extend uniquely to a R-
point SpecR→ X , i.e., X (R) = X(K). This hints that the NMP is related to the valuative criterion of
properness, and in fact it may be viewed as a variant of its to étale local R-morphisms SpecE → SpecR.
As before, take Y = SpecE, which is a smooth (since étale is equivalent to smooth and unramified)
R-scheme. By the NMP we have

YK = Spec(E ⊗R K) XK

Y = SpecE X

SpecR

fK

∃!f

Conversely, if there is such a map f making the diagram commutative, then it extends the point given by
fK .

Next result is a manifestation of one of the key features of Néron models: a lot can be done with their
existence (which we assume) and the NMP only, without any knowledge of their actual construction.

Lemma 2.2. Let X be a smooth, separated R-scheme of finite type which is the Néron model of its generic
fiber X, which is a smooth, separated, K-scheme of finite type. Then:

(1) the formation of Néron models is (functorially) unique: for N another Néron model of X, there
exists a unique isomorphism X → N over R inducing the identity on X;

(2) the formation of Néron models commutes with the fiber product: let X ′ a Néron model of its generic
fiber X ′, with the same hypothesis as above. Then X ×R X ′ is the Néron model of X ×K X ′;

(3) if X is a K-group scheme, then its group scheme structure extends uniquely to a R-group scheme
structure on X ;

(4) the formation of Néron models commutes with étale base change: if R′ is an integral domain étale
over R with fractions field K ′ = R′ ⊗R K, then XR′ is a Néron model of its generic fiber XK′ .

Proof. (1) Considering Y = X and idK : YK → X, it immediately follows from the NMP.
(2) Let Z be a smooth R-scheme and pick a K-morphism fK : ZK → (X ×R X ′)K . Consider the

following diagram

ZK

(X ×R X ′)K X ′
K

XK SpecK.

p′K◦fK

pK◦fK

fK

p′K

pK

By the NMP of X and X ′, there exist p : X ×R X ′ →X , p′ : X ×R X ′ →X ′, p ◦ f : Z →X
and p′ ◦f : Z →X ′ extending pK , p′K , pK ◦fK and p′K ◦fK . Therefore, by the universal property
of the fiber product there exists a unique map

f : Z →X ×R X ′

extending fK .
(3) We recall that, by the K-group scheme structure of X, there is a K-morphism mK : X×KX → X

such that X(T )×X(T )→ X(T ) makes X(T ) a group (with the induced law of composition) for
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every K-scheme T . By the NMP, we have the following diagram

X ×X X

X ×R X X

mK

m

where m extends uniquely mK . Since R → K is étale, and étale is stable under base change, we
have that X(T ) 'X (T ⊗K R), so that X inherits the group structure.

(4) Since XR′ is a smooth and separated R′-model of finite type of its generic fiber, we need only to
verify the NMP. Let Y ′ be a smooth R′-scheme and Y ′K′ →XK′ a K ′-morphism. The composition

Y ′K′ →XK′ →XK

gives a K-morphism extending to a R-morphism Y ′ → X , since X is the Néron model of XK .
Note that, since R′ → R is étale, that is, smooth and unramified, and Y ′ is smooth over R′, then
Y ′ is smooth over R as well. Therefore Y → X yields a R′-morphism Y ′ → X ×R R′. By the
Pullback Lemma applied to

Y ′K′ XK′ XK

Y ′ XR′ X

this is an extension of Y ′K′ →XK′ . The uniqueness of such extension follows from the uniqueness
of Y ′ →X and from the NMP of XR′ .

�

It is important to remark that Néron models have weak functorial properties: for instance, their for-
mation do not commute with ramified base change. Moreover, it also behaves poorly with exact sequences.

Before sketching how to construct a Néron model, next result gives a first property of how isogenies
and Néron models interact.

Let us recall that an isogeny f has a degree deg(f), defined as the rank of the finite group scheme ker(f).
We also say that a smooth, connected commutative K-group scheme G of finite type is semi-abelian if it
is an (1-)extension of an abelian variety by a torus. For G over a general base scheme S, we say that G is
semi-abelian if all its fibers are semi-abelian.

Proposition 2.3. Let G, G′ two smooth, commutative, connected K-group scheme of finite type admitting
Néron models G and G ′ over R respectively. Let also fK : G→ G′ be an isogeny such that char(k)6 | deg(fK)
or that G is semi-abelian. Then there is an isogeny f : G → G ′ extending fK . Moreover, there exists an
isogeny g : G ′ → G such that g ◦ f = [deg(fK)].

Sketch of proof. By [2, Lemma 2.7.2] we have the following two facts. If G is semi-abelian, then [deg(fK)]
is finite and flat. On the other hand, for char(k)6 | deg(fK) we have that [deg(fK)] is étale.

Now, since ker(fK) ⊂ ker([deg(fK)]), and fK is flat and onto, we have G′ = G/ ker(fK) and the
morphism G → G′ → G/ ker([deg(fK)]). Since [deg(fK)] is finite and it factors through G/[deg(fK)], we
have the existence of gK : G′ → G such that gK ◦ fK = [deg(fK)]. By the NMP of G and G ′, we have that
fK and gK extend to two R-morphisms f : G → G ′ and g : G ′ → G , such that g ◦ f = [deg(fK)]. Then
by our assumptions and the aforementioned facts, we have that [deg(fK)] is an isogeny and so are f and
g. �

2.2. An idea of existence. First of all, we present the local main existence theorem for abelian varieties.

Theorem 2.4. Let R be a dvr with fractions field K. Let A be an abelian variety over K. Then A admits
a Néron model A over R.
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We will sketch the main steps of its proof following [2]. For an alternative approach via formal groups
and invariant differential operators see [4].

Let us begin this highly technical section with some technical definitions.
We recall that a local ring (R,m) with residue field k is Henselian if the Hensel Lemma holds. Namely,

for every monic polynomial f ∈ R[x] and every simple zero α of f mod m, there is a unique α′ ∈ R such
that it lifts α and it is a zero of f . If R is Henselian and k is separably closed, then R is called strictly
Henselian.
Given any local ring R, the process of strict Henselisation gives the smallest strict Henselian local ring
containing R. More precisely, let ks denote a fixed separable closure3 of k. A strict Henselisation of
R consists of the pair (Rsh, i : R → Rsh) where Rsh is a strict Henselian local ring with residue field
(isomorphic to) ks and i is a local morphism with the following universal property. For any strict Henselian
local ring A and any local morphism R→ A, and a k-embedding of ks into the residue field of A, there is
a unique local morphism Rsh → A such that the diagram

A

R Rsh

k ks

commutes.
Given a scheme Z and an étale morphism Z → SpecR, we have that Rsh can also be constructed as

the colimit of OZ,z, for z a point of Z lying above the closed point of SpecR. This hints that the strict
Henselisation of OZ,z is a local ring for the étale topology on Z. In particular, this construction implies
that m generates the maximal ideal of Rsh, and this shows that the latter is again a dvr. Naturally, we
denote by Ksh its fractions field.

We will soon need the two following technical results.

Lemma 2.5 (EGA IV, 8.8.2). Let S be a Dedekind base scheme with s ∈ S.

(1) Let also X and Y be finitely presented S-schemes. Then we have a bijection

lim−→
U3s

HomU (X ×S U, Y ×S U) ' HomOS,s(X ×S OS,s, Y ×S OS,s)

where the colimit runs over all open neighborhoods U of s;
(2) let X(s) be an finitely presented OS,s-scheme. Then there are an open neighborhood S′ ⊂ S of s

and a S′-scheme X of finite presentation such that X ′ ⊗S′ OS,s ' X(s).

To introduce the second technical Lemma, we need a relative notion of rational map. Let again S
denote a Dedekind base scheme. An open subscheme U of a reduced S-scheme X is U -dense if for every
closed points s ∈ S, one has that Us = U ×S k(s) is Zariski dense in Xs. Let Y be a separated S-scheme.
A S-rational map f : X 99K Y is an equivalence class of S-morphisms U → Y where U is S-dense in X.
Lastly, we denote by dom(f) = {x ∈ X : f is defined at x} the domain of definition of f , i.e., the largest
open subset U on which f is defined.

Lemma 2.6 (Weil Extension Lemma). Let S be a Dedekind scheme. Let also Z be a smooth S-scheme
and G be a smooth, separated S-group scheme. If a S-rational map f : Z 99K G is defined in codimension
6 1, then f is defined everywhere.

3When k is finite, then the separable closure coincides with the algebraic one.
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2.2.1. Step 1: construction of a proper R-model. Let us recall the notion of schematic closure. Let X be
a flat R-scheme, and Y a closed subscheme of XK . The schematic closure Y of Y in X is defined as
follows. For an open affine U = SpecB of X , locally Y ∩ U is given by an ideal b of B ⊗R K. By taking
the pullback of b via j : B → B ⊗R K we define Y ∩ U . Note that since B/j∗b injects into the K-vector
space B⊗RK/b it follows that B/j∗b is a torsion-free R-module. Over a Dedekind domain this condition
is equivalent to flatness, and so we have that the schematic closure is flat over R.

As A is projective4, it is enough to fix a projective embedding of A

A ↪→ PnK ↪→ PnR
and then take the schematic closure of A in PnR, which we denote by A0. This gives us a proper, flat
R-model which is not necessarily smooth.

2.2.2. Step 2: the smoothening process. The goal of this step is to obtain a R-morphism f : A1 → A0 such
that fK : A0,K → A1,K is an isomorphism and that the canonical map A sm

1 (Rsh)→ A0(Rsh) is bijective.

Let Ω1
X /R be the sheaf of Kähler differentials of X over R. For a : SpecRsh → X , the Rsh-module

a∗Ω1
X /R decomposes into a free and a torsion part, thanks to the structure theorem for finitely generated

modules over a PID, as we mentioned that Rsh is a dvr.
The (Néron measure of) defect of smoothness δ(a) at a is the lenght of the torsion part of the Rsh-module
a∗Ω1

X /R. The finiteness of δ(a) follows from the fact that it is a finitely generated torsion module.

This is one of the key ideas of the smoothening process, and next Lemma shows that δ indeed is a reasonable
way to measure how X is far from being smooth.

Lemma 2.7. Let X be a R-scheme of finite type such that XK is smooth. Consider η ∈ XK and
z ∈ Xk := X ×R Spec k such that z ∈ {η}. In addition, suppose that XK is smooth at y of relative
dimension d = dimk(z) ΩX /R ⊗OX ,z

k(z). Then:

(1) X is smooth at z of relative dimension d;
(2) a∗Ω1

X /R is free if and only if the image of a is in X sm;

(3) the defect of smoothness δ has a maximum on X (Rsh).

Sketch of proof. (1) Let us recall the (non-trivial) fact that a morphism f : X → SpecR is smooth of
relative dimension d if f is flat and the fibers are geometrically regular of equidimension d. For
a morphism of finite type f : X → SpecR the set {x ∈ X : dimx Xf(x) > n} is closed for every
n > 0, since by Chevalley’s theorem the dimension of the fibers of f is upper-semicontinuous on X .
Since z ∈ {η}, then we have that dimz Xk > d. Moreover, the k(z)-dimension of Ω1

X /R ⊗ k(z) =

Ω1
Xk/k

⊗ k(z) is d. We omit the proof of flatness.

(2) By smoothness, Ω1
X /R is locally free on an open subset containing the image of a, so that a∗Ω1

X /R

is free.
On the other hand, let be z and η the images of the special and generic points of SpecRsh under

a. We have that rk a∗Ω1
X /R = dimzXK , so by part (1) we conclude.

(3) We refer to [2, Proposition 6 p.66].
�

Next Lemma shows that the defect of smoothness decreases after “wise” blowing-ups of X . Before
stating it, we need one more technical definition.

Let E ⊆ X (Rsh) and let Yk be a closed subscheme of X ×R Spec k. Let Uk be the largest open
subscheme of Yk which is smooth over k and Ω1

X /R|Uk is locally free. We have that this is dense in Yk.

Then Yk is E-permissible if the images of the specialisations of the points of E that specialise to ks-points
of Yk form a (schematically) dense subset of Yk contained in Uk.

4As a nice consequence of the theorem of the square.
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Lemma 2.8. Let Yk be a E-permissible closed subscheme of X ×RSpec k. Let X̃ →X be the blowing-up

of X at Yk. Let a ∈ E and denote by ã its unique lifting to a Rsh-point of X̃ . We have that:

(1) δ(ã) 6 max{0, δ(a)− 1} if a specialises to a point of Yk;
(2) δ(ã) = δ(a) otherwise.

Armed with this result, we can know introduce the main theorem of this section.
A smoothening of X is a proper R-morphism f : X1 → X which is an isomorphism on generic fibers

and such that X sm
1 (Rsh) = X (Rsh).

Theorem 2.9 (Smoothening Process). Let X be a R-scheme of finite type whose generic fiber X is a
smooth K-scheme. Then X admits a smoothening defined as a finite sequence of blowing-ups centered in
the singular loci of the successive special fibers.

Sketch of proof. We just give a (rather coarse5) idea of the actual proof. Let E ⊂ X (Rsh) such that its
points specialise into the singular locus of X . Consider the strict decreasing filtration E = E1 ⊃ E2 ⊃ . . .
given by:

• Yi = the closure of {im(ak : Spec ks →X )|ak ∈ Ei};
• Ui = largest open subscheme of Yi such that Ui is k-smooth and Ω1

X /R|Ui is locally free;

• Ei = points in Ei−1 specialising into Yi−1 − Ui−1.

We thus have that Yi is (Ei − Ei−1)-permissible. Since the Yi’s form a decreasing sequence of closed
subsets in Xk which is is Noetherian, there is n > 0 such that En+1 = ∅. If n = 0, we conclude. Otherwise
consider the defect of smoothness along En

δ(En) := max{δ(a)|a ∈ En}.

By Lemma 2.8 we have that the blowing-up X̃ → X of Yn in X is such that δ(ã) < δ(En) for every

ã ∈ Ẽn ⊂ X̃ (Rsh). As above, we construct a new sequence Ẽn,1 ⊃ Ẽn,2 ⊃ · · · ⊃ Ẽn,m+1 = ∅ and again
either m = 0 or we blow up the right closed. We proceed recursively, and after finitely many steps we
obtain X1 → X which is constructed by successive blowing-ups in the singular loci of the special fibers.
By construction, we have that every point in the lift of E to X1(Rsh) factor through X sm

1 . By definition,
X1 'X sm, so that all of X1(Rsh) factor through X sm

1 . �

Thus, if we remove from X1 its singular locus, we obtain a smooth R-scheme X̃1 of finite type and

a R-morphism X̃1 → X1 which is an isomorphism on generic fibers and such that X̃1(Rsh) = X1(Rsh).
Such R-schemes need not to be neither unique nor proper.

2.2.3. Step 3: the Weak Néron Model. Let X be a smooth, separated K-scheme of finite type. A weak
Néron model X wk of X is a smooth, separated R-scheme of finite type which is a R-model of X and such
that the canonical map X wk(Rsh)→ X(Ksh) is bijective.

Moreover, a weak Néron model X wk of X satifies the Weak Néron Mapping Property (WNMP) if, for
any smooth R-scheme Y with irreducible special fiber Yk and any K-rational map fK : YK 99K X there
is a R-rational map f : Y 99KX wk extending fK .

Proposition 2.10. Let X wk be a weak Néron model of X. Then X wk satisfies the WNMP.

Sketch of proof. Let Y and fK be as above. Consider an open dense subscheme U ⊂ YK upon which fK
is defined. Take now its complement Z := YK −U and denote by Z the schematic closure of Z in Y . As
we showed, Z is flat over R so that dim Zk = dimZ < dim YK = dim Yk. Hence we have that Yk −Zk

is Zariski-dense in Yk, and so U = Y −Z is dense in Y . We thus need to find a rational map U 99K X
extending the morphism fK : U 99K X. We can now replace Y with U so that we have fK : YK → X.
By the separatedness of X , we can work locally on Y and then glue the R-rational maps. In fact, for
a R-rational map Y 99K X , two of its representatives necessarily agree on an open dense subset of the
intersection of their domains. As X is separated, they need to agree on the entire intersection. In this

5I’m planning to write a clearer version of it hopefully soon.
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way they can be glued so to form a unique R-morphism. Assume now that Y is of finite type. Consider
the graph of fK and denote by T its schematic closure in Y ×R X . Denote also by p1 and p2 the two
projections on the first and second factor respectively. We claim that p1 is invertible on a dense open of
Y . Then the map p2 ◦ p−1

1 : Y 99KX is what we have been looking for. Let us show that p1(T )k contains
a dense open subset of Yk. We can assume that R = Rsh and that k = ks. Then the set of rational points
of Yk is dense in Yk by [2, Corollary 2.2.13]. Since R is strictly Henselian, and Y is smooth, we have that
yk ∈ Yk(k) lifts to y ∈ Y (R). Denote by xK the point f(yK) ∈ X(K). By definition of weak Néron model,
we have that xK extends to x ∈X (R). Therefore (y, x) ∈ T , so that yk ∈ p1(T )k. As Yk(k) ⊂ p1(T )k, we
have that p1(T )k is dense in Yk. By a theorem of Chevalley the image of a constructible is constructible
(here we need the assumption that Y is of finite type). Thus p1(T )k is constructible, so that it contains
a non-empty open of Yk. �

Now, we take the smooth (albeit non-proper) A wk = A sm
1 , which, by the smoothening process, is a

weak Néron model of A, and hence by the previous Proposition satisfies the WNMP.

2.2.4. Step 4: birational group laws. For a very nice exposition involving algebraic spaces, we invite the
reader to go through [1].

We begin with a notion which can be viewed as a weak version of a R-group scheme. Let X be a
smooth, separated, faithfully flat6 R-model of finite type of a smooth K-group scheme X of finite type
with multiplication given by mK : X ×K X → X. A R-birational group law on X is a R-rational map
mR : X ×R X 99KX extending mK such that mR is associative, as far as the rational maps are defined,
and the two universal translations X ×RX 99KX ×RX mapping (x, y) to (x, xy) and (xy, y) respectively
are R-birational maps. A solution of a R-birational group law mR on X is a smooth, separated R-group
scheme of finite type X̄ with multiplication m̄R together with a R-dense open X ′ ⊂ X and a R-dense
open immersion X ′ ↪→ X̄ such that m̄R restricts to mR|X ′ . This means that a solution of a birational
group law expands a R-dense open to a R-group scheme. Moreover, if a solution exists, then it is unique
up to isomorphism.

Next result, originally due to Weil (whose original motivation was the algebraic construction of the
Jacobian variety) and then generalized by Artin, is particularly hard (and long) and we will not sketch
any proof.

Theorem 2.11. Let X and mR be as above. Then there exists a solution of mR, and X = X ′ is a
R-dense open subscheme of a R-group X̄ with m̄R restricting to mR on X .

Note that the previous result deals only with the case of a dvr as base scheme. For a more general base,
one needs to apply the technique of faithfully flat descent.

Let us now go back to the case of an abelian variety A over K and its Néron model A , provided it

exists. The sheaf of Kähler differentials ΩdA /R =
∧d

Ω1
A /R is a line bundle generated by a (bi-)invariant

differential form. In particular, it can be showed that on A there is an invariant global section ω unique
up to a constant in K×.
Let η be the generic point of the special fiber Ak. Then its local ring OA ,η is a dvr with maximal ideal

generated by the uniformizer π of R and the free OA ,η-module ΩdA /R,η has rank 1, generated by π− ordη(ω)ω.

In this way ω can be viewed as a differential form on A .
Let us label as {Ci}i∈I the components of A × Spec k, each of them with generic points ηi’s. If

ordηi(ω) = min{ordηi(ω) : i ∈ I}, the Ci is called ω-minimal. We also denote by Ai the open subscheme
of A where all components of its special fiber were removed besides Ci. Moreover, we say that Ai and Aj

are equivalent if there is a R-birational map Ai 99K Aj which restricts to the identity on the (common)
generic fiber G. Lastly, since this is an equivalence relation, let us index by I0 the Ai’s with ω-minimal
special fiber, and by I1 a set of equivalence class representative for the Ai’s with ω-minimal special fiber.

6I.e., X has non-empty fibers over R.
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Proposition 2.12. Let A bg be the subscheme of A obtained by removing all the components Ci for
i ∈ I − I1 from the special fiber. Then A bg has a R-birational group law mR that extends the group law
mK on G.

Sketch of proof. By the WNMP of A wk the K-morphism mK extends to a R-rational map

m : A bg ×A wk 99K A wk.

Our goal is to show that m induces a R-rational map

A bg ×A bg 99K A bg.

We claim, without any proof, that ω extends to a global section of ΩdA wk/R and its restriction to A bg is a

global generator of ΩdA bg/R.

Consider the restriction to the domain of definition of m of the universal left translation f : dom(m) →
A bg×A wk. As f is a A bg-morphism of left translation, we have that (p2 ◦ f)∗ω = ω|dom(m) holds on the

generic fiber (and hence everywhere by density), where p2 : A bg×A wk → A wk. Let ξ be the generic point
of the special fiber of A bg ×A wk, and ζ := f(ξ). We have that ω|dom(m) is a generator of Ωddom(m)/A bg

at ξ and π− ordζ(ω)ω|dom(m) is a generator of ΩdA bg×A wk/A bg at ζ. Thus

(p2 ◦ f)∗π− ordζ(ω)ω = π− ordζ(ω)p∗2ω = gω|dom(m)

for g in the stalk at ξ. Hence ordζ(ω) = 0 and so ζ ∈ A bg × A bg. Therefore the set of irreducible
components of the special fiber of A bg × A bg is mapped into itself by f . So we get a morphism
fbg : dom(m) ∩A bg ×A bg → A bg ×A bg and the desired R-rational map

p2 ◦ fbg : dom(m) ∩A bg ×A bg 99K A bg.

Similarly one can define universal translations first on dom(m) and then on dom(m) ∩ A bg × A bg, and
this show that those induce an isomorphism of dom(m) ∩A bg ×A bg onto a R-dense subscheme. �

We eventually obtained a smooth, separated R-model A bg of finite type of A with a R-birational group
law extending the group law of A. By theorem 2.11, this has a solution Ā bg which we denote by A .

Proposition 2.13. The solution A to A bg is the Néron model of A.

Sketch of proof. Let s : Z → SpecR be a smooth R-scheme and fix a K-morphism fK : ZK → A. Consider
also the K-morphism τK : ZK ×A→ A defined by (z, x) 7→ fK(z)x. By the WNMP of A wk, this extends
to a R-rational map τwk : Z ×A wk 99K A wk. Repeating the argument in the proof of Proposition 2.12,
we get that the induced R-rational map Z ×A wk 99K Z ×A wk defined by (z, x) 7→ (z, τwk(z, x)) restricts
to a R-rational map Z ×A bg 99K Z ×A bg. Since, by definition, the solution is birational to A bg, then
we view the latter as a R-rational map Z × Ā bg 99K Z × Ā bg. Composing with the projection onto the
second factor, we get the R-rational map τ̄ : Z × Ā bg 99K Ā bg which extends τK . Since it is defined on
the generic fibers, it has codimension 1. Thus by Weil Extension lemma it is defined everywhere and it
extends to a morphism. Denote by ε : SpecR → A the unit section of A , i.e., a section of the unique
morphism A → SpecR. Then the R-morphism

τ̄ ◦ (id, ε ◦ s) : Z → Z ×R A → A

extends z 7→ (z, 1A) 7→ f(z)1A = f(z) and it coincides with fK on the generic fiber. By the separatedness
of A we have the unicity of the extension. Let me explain this last step in a more detailed way. In general,
give two morphisms f, g : X → Y of R-schemes, one can define the locus where they agree as follows. This
is a X -scheme ` : L →X defined by the following universal property. For any morphism h : Z →X we
have h ◦ f = h ◦ g if and only if h factors through `. Such a scheme T exists, since it is represented by the
fiber product

L X

Y Y ×R Y∆
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where ∆ is the diagonal morphism. In particular, the separatedness of A implies that ∆ is a closed
embedding, hence so is `. Therefore the locus where f and g agree is a closed subscheme of X . In our
context, since the morphisms agree on the generic fiber ZK , the locus of agreement is a closed subscheme
of Z containing the generic fiber. Therefore it has to be everything, and so the two morphisms agree. �

2.2.5. The global case. An immediate goal after Theorem 2.4 consists of extending it to non-local Dedekind
domains. As one may guess, this basically happens by glueing local Néron models together. Unfortunately,
this global model may not be of finite type anymore, but in the case of abelian varieties the glueing works
properly, and we obtain the desired global Néron model. Next lemma makes a more precise sense of the
what a local Néron model is.

Lemma 2.14. Let X be a smooth, separated K-scheme of finite type. Then:

(1) let X be a S-scheme of finite type with generic fiber X. The X is a Néron model of X over R if
and only if the OS,s-scheme X(s) = X ×S OS,s is a Néron model of X over OS,s for every closed
point s ∈ S;

(2) there exists a Néron model X over S = SpecR of X if and only if there exists a dense open
subscheme S′ ⊂ S, a Néron model X ′ over S′ and Néron models of X(s) of X over OS,s for each
of the finitely many s ∈ S − S′.

Proof. (1) Let K denote the fractions field of OS,s. We want to show that X(s) satisfies the NMP.
Let Y(s) be a smooth OS,s-scheme and pick a morphism fK : Y(s)K → X(s)K . Assume it is also
of finite type, hence of finite presentation over OS,s. Then we can extend Y(s) to a scheme Y ′

over a connected open neighborhood S′ ⊂ S of s and suppose it is smooth. Since X ′ = X ×S S′
is a Néron model of its generic fiber, then it follows that fK extends uniquely to a S′-morphism
f ′ : Y ′ →X ′. Therefore f ′ ⊗ OS,s is the desired morphism.

On the other hand, consider a K-morphism fK : YK → XK . As above, assume Y is of finite
presentation over S. Then by the second part of lemma 2.5 we have that over a neighborhood Us
of a closed point s ∈ S, the morphism fK extends uniquely to a Us-morphism fs : Y ×S Us →
X ×S Us. Glueing all the fs’s yields a unique S-morphism f : Y → X extending fK . Finally,
since X ×S Spec OS,s is smooth and separated, so is X .

(2) We sketch the proof of (2). First of all, we claim that for an open covering (Si)i of S, then X
is a Néron model of X if and only if it is a Néron model for the Si-scheme X ×S Si. This fact,
combined with part (1) give the “if” part.

On the other hand, assume S is connected and denote the closed points of S−S′ by {s1, . . . , sn}.
Let X ′ be a Néron model of X over S′, and let X(si) be the local Néron model of X over OS,si .
Then by lemma 2.5 we have that X(si) extends to a smooth, separated scheme Xi of finite type
over Ui, an open neighborhood of si. Since X ′ and Xi coincide on the generic fiber, i.e., on the
generic point of S, they also coincide on a non-empty part of S′. After removing finitely many
points from Ui, assume that Ui ∩ (S−S′) = {si} and that Xi agrees with X ′ on S′ ∩Si. Glueing
the Xi’s with X ′ over S′ ∩ Si gives us a smooth, separated S-model X of finite type such that
X ×S S′ = X ′ and X ×S Spec OS,si = X(si). Therefore X is a global Néron model of X by the
first part of this lemma.

�

Lemma 2.15. Let R be a Dedekind domain with fractions field K,a dn let A be an abelian variety over
K. Assume that A extends to a smooth and proper R-scheme A . Then A is an abelian scheme and its
group structure extends the one on A.

Proof. See [2, Proposition 2 p. 19]. �

Theorem 2.16. Let R be a Dedekind domain with K its fractions field. Any abelian variety A over K
has a global Néron model A over R.
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Sketch of proof. Lemma 2.5 grants us that we can “spread out” A to a scheme A U of finite type over a
neighborhood of the generic point of SpecR. By lemma 2.15 that A U is smooth, proper and that admits a
R-group law birational to the group law on A. This implies that A U is a Néron model of A over U . Since
by Theorem 2.4 there are Néron models over the local rings of the finitely many points in SpecR−U , we
conclude by Lemma 2.14. �

2.3. The case of abelian schemes. Despite the fact that Néron models are defined in the broad setting
of schemes, it seems that their major use lies in the realm of group schemes. The classical non-example
of a Néron model consists of considering P1

K and its smooth, separated R-model P1
R, which fails to be its

Néron model. In fact, not all automorphisms of P1
K extend to those of P1

R, as there are matrices in GL2(K)
that do not remain invertible once rescaled so to have coefficients in R.

Note that not every group scheme has a Néron model (or an obvious one): for instance A1
R is not the

Néron model of A1
K , since A1

K(K) 6= A1
R(R). Actually, A1

K does not have any Néron model. Similarly, Gm,R
is not the Néron model of Gm,K , although Gm,K has a locally of finite type Néron model, which we are
going to construct. One trivial remark, which amounts to non-trivial hint: one can write Q×p =

⊔
n∈Z p

nZ×p .

2.3.1. The Néron model of the multiplicative group and of the norm torus. Let us consider the case of a dvr
R with uniformizer $ and fraction field K. Let S = Spec(R) and let s be the closed point of S. Indeed,
$ is the generator of the ideal corresponding to s over an open dense (i.e., non-empty) neighborhood U(s)
of s. Note that, away from s, the uniformizer $ is invertible, since it generates the ideal corresponding to
s. Hence, for n ∈ Z, we can (and will) consider $n as a (U(s)−{s})-valued point of Gm,R. Consider now

$nGm,R
as the translate by $n of Gm,R inside the R-model we want to construct. Note that, as schemes, $nGm,R
and Gm,R are isomorphic. The point is that, over the generic fiber, the way it is glued is different. The
idea is that we have $nGm,R ' SpecR[X,X−1], but the point on the generic fiber corresponding to an
element r ∈ R of valuation n comes from the morphism

R[X,X−1]→ R, X 7→ r

$n

since now r/$n is a unit over R. In other words, we have the glueing data over the generic fiber K

ϕn,m : $nGm,R × SpecK → $mGm,R × SpecK

where ϕn,m = ·$m−n, which is an isomorphism over K. In this way we obtain the equivalence relation ∼
such that, for xn ∈ $nGm,R and xm ∈ $mGm,R, we have xn ∼ xm if and only if ϕn,mxn = xm.

We thus define

Gm =
⊔
n∈Z

$nGm,R/ ∼ .

This is a smooth, separated R-group scheme locally of finite type. Since $ is invertible in K, the glueing
data are isomorphism over the generic fiber and therefore Gm × Spec(K) ' Gm,K . On the other hand we
have

Gm(R) =
⊔
n

$nGm,R(R) = K×,

and by [2, Proposition 2, p.290] we conclude that Gm is the lft Néron R-model of Gm,K .

Let us now consider the so called norm torus, i.e., the affine scheme given by a Pell equation. Consider
Zp for p odd. We consider the following Qp-norm torus

T = Spec
Qp[X,Y ]

(X2 − pY 2 − 1)
.

This is a Qp-group scheme with multiplication, inverse, and unit section respectively given by:

(a, b) · (a′, b′) = (aa′ + pbb′, ab′ + a′b), (1, 0), (a, b)−1 = (a,−b).
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This Qp-norm torus happens to have a nice Néron model: we show that the smooth, separated, Zp-group
scheme

T = Spec
Zp[X,Y ]

(X2 − pY 2 − 1)

of finite type is in fact the Néron model of T . In fact, it is enough to check that its Qur
p -points are

in bijection to its Zur
p , where the superscript ur denotes the maximal unramified extension. Consider a

solution (a/pn, b/pm), for p not dividing a and b (so that the solution is not integral) and n > m. Suppose,
by contradiction, than n > 0. Then p2n = a2− p1−m+2nb2. Reducing modp, this implies that p divides a,
which is a contradiction. Therefore n = 0. A similar argument for m allows us to conclude.

At any rate, note that there exist rational solution to the Pell equation that are not integral.
We conclude by noting that we have

T ⊗Qp Qp(
√
p) ' Gm,Qp(

√
p)

as Qp(
√
p)-schemes. This gives an exemples of how the formation of Néron models does not commute with

ramified base change.

2.3.2. Abelian schemes. Recall that an abelian R-scheme A , is a smooth, proper R-group scheme with
connected geometric fibers. We remark that the commutativity is automatic, although it relies on some
GIT deformation-theoretic arguments.

Proposition 2.17. Let A be an abelian R-scheme. Then A is the Néron model of its generic fiber A.

Proof. Let Y be a smooth R-scheme with generic fiber Y and a K-morphism fK : Y → A. We want to
show that there exists a unique R-morphism f : Y → A extending fK .

As A is separated, we can work locally on Y . Assume, by smoothness, that Y is irreducible. By
Lemma 2.5, the map fK gives rise to a morphism f ′ : Y ×R U ′ → A defined over an open neighborhood
U ′ of the generic point of SpecR.

Now we aim to extend f ′ to a R-rational map f : Y 99K A . Let s ∈ Spec(R)−U be a closed point and
consider the generic point η of an irreducible component Ys,i of Ys. Let me recall now that R, as a dvr, can
be thought of as a local ring of a codimension-1 closed set. Since Y is necessarily flat over R, we have the
formula dim Y −dim Ys = dimR, so the the fiber of Y at the closed point s is of 1-codimensional. Namely,
say that dimY = n. Then we can view Y as a family of n-dimensional fibers over the 1-dimensional base
SpecR, so that it is (n+ 1)-dimensional. Hence its fibers are 1-codimensional in Y . This implies that its
local ring OY ,η is a dvr. The K-morphism fK induces the diagram

Spec(Frac(OY ,η)) Y A A

Spec OY ,η SpecR

fK

∃!

and by the valuative criterion for properness for A , there exists a unique such dotted map. In other
words, fK extends uniquely to a morphism Spec OY ,η → A . By Lemma 2.5, we obtain an extension of
fK to a morphism Uη → A for U an open neighborhood of η. Since A is separated, we can glue together
Uη → A with f ′ and obtain a map f : U ′ ∪Uη → A which extends fK . Furthermore we have that U ′ ∪Uη
is S-dense because of the generic points. Hence f : Y 99K A is an S-rational map extending fK . Note
that by construction U ′ ∪Uη, we have that dom(f) contains all 1-codimensional points of Y in the closed
fibers. Since Y is a smooth scheme and A is smooth and proper, hence separated, group scheme, by Weil
Extension lemma we obtain that f is defined everywhere. �

2.3.3. Elliptic curves. Consider now an elliptic curve E over K and let E be its Néron model. A nice
model to deal with, especially for explicit calculations, is the minimal Weierstrass model W, whenever it
exists7. For E with good reduction, W is an abelian scheme, so by Proposition 2.17 we have that W ' E .

7In our setting, for R a dvr, it does.
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On the other hand, in the bad reduction case, W is not smooth.
Let E the minimal regular proper model of E, i.e., a regular, proper R-model of E which is minimal with
respect to the relation of domination among all other regular R-models of E. Namely, for another such
a model E ′ of E, any domination map E → E ′ is an isomorphism. Intuitively, one may think of it as of
the regular proper R-model such that the special fiber has the lowest possible number of components, and
blowing down one of them would imply a loss of regularity. One can find a regular model by repeatedly
blowing-up and normalizing a model. Subsequently, one finds a minimal regular model by blowing-down
certain divisors in the special fiber.
It is known8 that for any smooth K-curve of non-zero genus, there exists a unique minimal regular proper
model. Let Esm be the smooth locus of E . By [2, Prop.1, p.21] we have that the map induced by the NMP
of E gives the following isomorphism

(2.1) Esm ' E .

Next result aims to a rather “concrete” description of E . Let us denote by E ◦ the relative identity compo-
nent, i.e., the open subscheme of E given by removing the closed complement of the identity component
in the (finitely many) disconnected fibers. Then we have

Wsm ' E ◦,

which essentially follows from (2.1) and by the fact that a minimal Weierstrass model can be obtained by
blowing down the (finitely many) components of the special fiber E ×R Spec k which are disjoint from the
closure in E of the identity of E.

Here the sketch of an example. Let E be defined by y2 = x3 + p over Qp. The same equation defines
a minimal Weierstrass model W over Zp, which is smooth away from the point (0, 0) in the special fiber.
Note that (0, 0) is regular. Thus W is a regular model of E, and it is also minimal since the special fiber
has no divisor to blow down. Therefore we have that W − {(0, 0)} ' E .

More generally, the following result [6, Theorem 4.1] holds.

Proposition 2.18. Let C be a proper, smooth, connected curve of positive genus over K. Then the smooth
locus C sm of the minimal proper regular model of C over S is the Néron model of C.

2.3.4. Semi-stable reduction. Recall that an abelian variety A over K has semi-stable reduction if the
special fiber of the identity component of its Néron model is semi-abelian.

Theorem 2.19 (Semi-stable reduction). For an abelian variety A over K, there exists a finite separable
extension K ′ over K such that A⊗K K ′ has semi-stable reduction over the integral closure R′ of R in K.

Theorem 2.20. Let M be a semi-abelian R-scheme with generic fiber the abelian variety A, whose Néron
model is denoted by A . Then the natural map

M → A ◦

is an isomorphism.

As an immediate corollary to the previous theorem, one obtains that base-change behaves well in the
semi-stable case: more precisely, the identity component is preserved under base-change.

Corollary 2.21. Let N denote the Néron model of A ⊗K K ′. If A has semi-stable reduction, then the
natural map

A ◦ × SpecR′ → N ◦

is an isomorphism.

8By an highly non-trivial theorem.



SEMINAR NOTES ON NÉRON MODELS 13

Proof. Since the A × SpecR′ is smooth and separated with generic fiber AK′ , the by the NMP there is a
unique R′-group map A ×SpecR′ → N , which is the base-change morphism for a Néron model relative to
R′ → R. This induces a natural map between the identity components. Now, we have that A ◦ × SpecR′

is a semi-abelian R′-scheme with generic fiber AK′ . Thus by theorem 2.20 we conclude. �

2.3.5. Néron models of Jacobians. Recall that the Jacobian of a normal, flat K-curve C is a smooth,
connected K-group scheme of finite type. If K is a perfect field, then normal is equivalent to smooth and
we have that the Jacobian of a proper and smooth curve is an abelian variety, and so we know it has a
Néron model. Next result deals with the case of a general base field K.
Quite naturally, one could object: why don we care about imperfect fields? Let S be a surface over Z and
let η be a generic point of its special fiber at p. Then the local ring OSp,η is a dvr whose residue field is
global function fields over finite field, i.e., a function field of irreducible components of the fiber at p, and
this global function field is imperfect.

Theorem 2.22. Let C be a flat, regular projective R-curve with geometrically reduced and irreducible
fibers, and assume its generic fiber C admits a section. Then Pic◦C/R is the Néron model of its generic
fiber Pic◦C/K .

Sketch of proof. Let Y be a smooth R-scheme and pick a K-morphism fK : YK → PicC/K .

Let Pic(C) denote the absolute Picard group, i.e., H1(C,O×C ). Since C admits a section, by [2, Propo-
sition 4, p.204], the sequence

Pic(Y )→ Pic(C ×R Y )→ PicC/R(Y )

is exact. Hence fK corresponds to a line bundle LK on CK ×K YK . Since by [2, Proposition 9, p.49]
smooth schemes over regular schemes are regular, then C ×RY is regular and LK extends to a line bundle
L on C ×R Y . Therefore fk extends to a R-morphism f : Y → PicC/R.

By constancy of the degree map in flat families (see [2, Proposition 2, p.238]), the map f factors through
Pic◦C/R. The unicity follows from the separatedness of Pic◦C/R.

�
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